
1

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING
SYLLABUS
OBJECTIVES:

• To know the basics of algorithmic problem solving

• To read and write simple Python programs.
• To develop Python programs with conditionals and loops.
• To define Python functions and call them.

• To use Python data structures –- lists, tuples, dictionaries.
• To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING 9
Algorithms, building blocks of algorithms (statements, state, control flow, functions),

notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple
strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a
list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.
UNIT II DATA, EXPRESSIONS, STATEMENTS 9

Python interpreter and interactive mode; values and types: int, float, boolean, string, and
list; variables, expressions, statements, tuple assignment, precedence of operators, comments;
modules and functions, function definition and use, flow of execution, parameters and arguments;
Illustrative programs: exchange the values of two variables, circulate the values of n variables,
distance between two points.
UNIT III CONTROL FLOW, FUNCTIONS 9

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained
conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return
values, parameters, local and global scope, function composition, recursion; Strings: string slices,
immutability, string functions and methods, string module; Lists as arrays. Illustrative programs:
square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.
UNIT IV LISTS, TUPLES, DICTIONARIES 9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list
parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods;
advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort,
mergesort, histogram.
UNIT V FILES, MODULES, PACKAGES 9

Files and exception: text files, reading and writing files, format operator; command line
arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs:
word count, copy file.

TOTAL : 45 PERIODS
TEXT BOOKS
Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist‘‘, 2nd edition,
Updatedfor Python 3,Shroff/O‘Reilly Publishers, 2016 (http://greenteapress.com/wp/thinkpython/)
Guido van Rossum and Fred L. Drake Jr, ―An Introduction to Python – Revised and updated for
Python 3.2, Network Theory Ltd., 2011.
REFERENCES:
John V Guttag, ―Introduction to Computation and Programming Using Python‘‘, Revised and
expanded Edition, MIT Press , 2013
Robert Sedgewick, Kevin Wayne, Robert Dondero, ―Introduction to Programming in Python: An
Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

http://greenteapress.com/wp/think-python/
http://greenteapress.com/wp/think-python/
http://greenteapress.com/wp/think-python/
http://greenteapress.com/wp/think-python/
http://greenteapress.com/wp/think-python/

2

UNIT I ALGORITHMIC PROBLEM SOLVING

INTRODUCTION

PROBLEM SOLVING
Problem solving is the systematic approach to define the problem and creating number of

solutions.
The problem solving process starts with the problem specifications and ends with a

correct program.
PROBLEM SOLVING TECHNIQUES

Problem solving technique is a set of techniques that helps in providing logic for solving a
problem.

Problem solving can be expressed in the form of
1. Algorithms.
2. Flowcharts.
3. Pseudo codes.
4. Programs

1.ALGORITHM

It is defined as a sequence of instructions that describe a method for solving a problem.
In other words it is a step by step procedure for solving a problem

• Should be written in simple English
• Each and every instruction should be precise and unambiguous.
• Instructions in an algorithm should not be repeated infinitely.
• Algorithm should conclude after a finite number of steps.
• Should have an end point
• Derived results should be obtained only after the algorithm terminates.

Qualities of a good algorithm

The following are the primary factors that are often used to judge the quality of the
algorithms.

Time – To execute a program, the computer system takes some amount of time. The lesser
is the time required, the better is the algorithm.

Memory – To execute a program, computer system takes some amount of memory space.
The lesser is the memory required, the better is the algorithm.

Accuracy – Multiple algorithms may provide suitable or correct solutions to a given
problem, some of these may provide more accurate results than others, and such algorithms may be
suitable

Building Blocks of Algorithm
As algorithm is a part of the blue-print or plan for the computer program. An algorithm is

constructed using following blocks.

• Statements
• States

• Control flow
• Function

3

Statements
Statements are simple sentences written in algorithm for specific purpose. Statements may

consists of assignment statements, input/output statements, comment statements
Example:

• Read the value of ‘a’ //This is input statement
• Calculate c=a+b //This is assignment statement
• Print the value of c // This is output statement

Comment statements are given after // symbol, which is used to tell the purpose of the line.

States
An algorithm is deterministic automation for accomplishing a goal which, given an initial

state, will terminate in a defined end-state.
An algorithm will definitely have start state and end state.

Control Flow
Control flow which is also stated as flow of control, determines what section of code is to

run in program at a given time. There are three types of flows, they are
1. Sequential control flow
2. Selection or Conditional control flow
3. Looping or repetition control flow

Sequential control flow:
The name suggests the sequential control structure is used to perform the action one after

another. Only one step is executed once. The logic is top to bottom approach.
Example
Description: To find the sum of two numbers.
1. Start
2. Read the value of ‘a’
3. Read the value of ‘b’
4. Calculate sum=a+b
5. Print the sum of two number
6. Stop

Selection or Conditional control flow
Selection flow allows the program to make choice between two alternate paths based on

condition. It is also called as decision structure
Basic structure:

IFCONDITION is TRUE then
perform some action

ELSE IF CONDITION is FALSE then
perform some action

The conditional control flow is explained with the example of finding greatest of two
numbers.

Example
Description: finding the greater number
1. Start
2. Read a

4

3. Read b
4. If a>b then

4.1. Print a is greater
else

4.2. Print b is greater
5. Stop

Repetition control flow
Repetition control flow means that one or more steps are performed repeatedly until some

condition is reached. This logic is used for producing loops in program logic when one one more
instructions may need to be executed several times or depending on condition.

Basic Structure:
Repeat untilCONDITIONis true

Statements
Example

Description: to print the values from 1 to n
1. Start
2. Read the value of ‘n’
3. Initialize i as 1
4. Repeat step 4.1 until i< n

4.1. Print i
5. Stop

Function
A function is a block of organized, reusable code that is used to perform a single, related

action. Function is also named as methods, sub-routines.
Elements of functions:
1. Name for declaration of function
2. Body consisting local declaration and statements
3. Formal parameter
4. Optional result type.
Basic Syntax

function_name(parameters)
function statements

end function

Algorithm for addition of two numbers using function
Main function()

Step 1: Start
Step 2:Call the function add()
Step 3: Stop

sub function add()
Step1:Functionstart

5

Step2:Geta,bValues
Step 3: add c=a+b
Step 4: Printc
Step 5: Return

2.NOTATIONS OF AN ALGORITHM
Algorithm can be expressed in many different notations, including Natural Language,

Pseudo code, flowcharts and programming languages. Natural language tends to be verbose
and ambiguous. Pseudocode and flowcharts are represented through structured human language.

A notation is a system of characters, expressions, graphics or symbols designs used among
each others in problem solving to represent technical facts, created to facilitate the best result for a
program
Pseudocode

Pseudocode is an informal high-level description of the operating principle of a
computer program or algorithm. It uses the basic structure of a normal programming language,
but is intended for human reading rather than machine reading.

It is text based detail design tool. Pseudo means false and code refers to instructions
written in programming language.

Pseudocode cannot be compiled nor executed, and there are no real formatting or syntax
rules. The pseudocode is written in normal English language which cannot be understood by the
computer.

Example:
Pseudocode: To find sum of two numbers
READ num1,num2
sum=num1+num2
PRINT sum

Basic rules to write pseudocode:
1. Only one statement per line.

Statements represents single action is written on same line. For example to read the
input, all the inputs must be read using single statement.

2. Capitalized initial keywords
The keywords should be written in capital letters. Eg: READ, WRITE, IF, ELSE,
ENDIF, WHILE, REPEAT, UNTIL
Example:

Pseudocode: Find the total and average of three subjects
RAED name, department, mark1, mark2, mark3
Total=mark1+mark2+mark3
Average=Total/3
WRITE name, department,mark1, mark2, mark3

3. Indent to show hierarchy
Indentation is a process of showing the boundaries of the structure.

4. End multi-line structures
Each structure must be ended properly, which provides more clarity.
Example:

6

Pseudocode: Find greatest of two numbers
READ a, b

IF a>b then
PRINT a is greater

ELSE
PRINT b is greater

ENDIF
5. Keep statements language independent.

Pesudocode must never written or use any syntax of any programming language.

Advantages of Pseudocode
• Can be done easily on a word processor

• Easily modified
• Implements structured concepts well
• It can be written easily

• It can be read and understood easily
• Converting pseudocode to programming language is easy as compared with

flowchart
Disadvantages of Pseudocode

• It is not visual

• There is no standardized style or format
Flowchart

A graphical representation of an algorithm. Flowcharts is a diagram made up of boxes,
diamonds, and other shapes, connected by arrows.

Each shape represents a step in process and arrows show the order in which they occur.
Table 1: Flowchart Symbols

S.No Name of
symbol

Symbol Type Description

1. Terminal
Symbol

Oval Represent the start and
stop of the program.

2. Input/ Output
symbol

Parallelogram Denotes either input or
output operation.

3. Process symbol Rectangle Denotes the process to be
carried

4. Decision symbol Diamond Represents decision
making and branching

5. Flow lines Arrow lines Represents the sequence
of steps and direction of
flow. Used to connect
symbols.

7

6. Connector Circle A connector symbol is
represented by a circle
and a letter or digit is
placed in the circle to
specify the link. This
symbol is used to
connect flowcharts.

Rules for drawing flowchart
1. In drawing a proper flowchart, all necessary requirements should be listed out in logical

order.
2. The flow chart should be clear, neat and easy to follow. There should not be any room

for ambiguity in understanding the flowchart.
3. The usual directions of the flow of a procedure or system is from left to right or top to

bottom.
Only one flow line should come out from a process symbol.

4. Only one flow line should enter a decision symbol, but two or three flow lines, one for
each possible answer, cap leave the decision symbol.

5. Only one flow line is used in conjunction with terminal symbol.

6. If flowchart becomes complex, it is better to use connector symbols to reduce the
number of flow lines.

7. Ensure that flowchart has logical start and stop.

Advantages of Flowchart
Communication:

Flowcharts are better way of communicating the logic of the system.
Effective Analysis

With the help of flowchart, a problem can be analyzed in more effective way.
Proper Documentation

Flowcharts are used for good program documentation, which is needed for various
purposes.
Efficient Coding

8

The flowcharts act as a guide or blue print during the system analysis and program
development phase.
Systematic Testing and Debugging

The flowchart helps in testing and debugging the program
Efficient Program Maintenance

The maintenance of operating program becomes easy with the help of flowchart. It
helps the programmer to put efforts more efficiently on that part.

Disadvantages of Flowchart
Complex Logic: Sometimes, the program logic is quite complicated. In that case flowchart
becomes complex and difficult to use.
Alteration and Modification: If alterations are required the flowchart may require re-
drawing completely.
Reproduction: As the flowchart symbols cannot be typed, reproduction becomes
problematic.

Control Structures using flowcharts and Pseudocode
Sequence Structure

Pseudocode Flow Chart
General Structure

Process 1
….

Process 2
…

Process 3

Example

READ a
READ b
Result c=a+b
PRINT c

Process 1

Process 3

Process 2

Start

a=10,b=20

c=a+b

print c

Stop

9

Conditional Structure
• Conditional structure is used to check the condition. It will be having two outputs only (True or False)
• IF and IF…ELSE are the conditional structures used in Python language.

• CASE is the structure used to select multi way selection control. It is not supported in Python.

Pseudocode Flow Chart
General Structure
IF condition THEN

Process 1
ENDIF

Example
READ a
READ b
IF a>b THEN
PRINT a is greater

IF… ELSE
IF…THEN…ELSE is the structure used to specify, if the condition is true, then execute Process1,

else, that is condition is false then execute Process2

Pseudocode Flow Chart
General Structure
IF condition THEN

Process 1
ELSE

Process 2
ENDIF

Example

NoProcess 1

if(condition)
Yes

Start

a=10,b=20

Stop

Print a is greater

if (a>b)Yes

No

NoProcess 1

if(condition)Yes

Process 2

Process 2

10

READ a
READ b
IF a>b THEN
PRINT a is greater

Iteration or Looping Structure
• Looping is generally used with WHILE or DO...WHILE or FOR loop.
• WHILE and FOR is entry checked loop

• DO…WHILE is exit checked loop, so the loop will be executed at least once.

Pseudocode Flow Chart
General Structure
WHILE condition

Body of the loop
ENDWHILE

Example

Start

a=10,b=20

Stop

Print a is greater

if (a>b)Yes

No

Print b is greater

Yes

if(condition)
No

Body of the loop

11

o In python DO…WHILE is not supported.
o If the loop condition is true then the loop gets into infinite loop, which may lead to system

crash

Programming Language
• A programming language is a vocabulary and set of grammatical rules for instructing a computer

or computing device to perform specific tasks. In other word it is set of instructions for the
computer to solve the problem.

• Programming Language is a formal language with set of instruction, to the computer to solve a
problem. The program will accept the data to perform computation.

Program= Algorithm +Data
Need for Programming Languages

• Programming languages are also used to organize the computation
• Using Programming language we can solve different problems

• To improve the efficiency of the programs.
Types of Programming Language

In general Programming languages are classified into three types. They are
• Low – level or Machine Language

• Intermediate or Assembly Language
• High – level Programming language

Machine Language:
Machine language is the lowest-level programming language (except for computers that utilize

programmable microcode). Machine languages are the only languages understood by computers. It is also
called as low level language.

Example code:100110011
111001100

Assembly Language:
An assembly language contains the same instructions as a machine language, but the instructions

and variables have names instead of being just numbers. An assembler language consists of mnemonics,
mnemonics that corresponds unique machine instruction.

Example code: start
addx,y
subx,y

INITIALIZE a=1
WHILE a<10 THEN

PRINT a
a=a+1

ENDWHILE

Start

a=1

Stop

if (a<10)No

Yes

Print a

a=a+1

12

High – level Language:
A high-level language (HLL) is a programming language such as C, FORTRAN, or Pascal that

enables a programmer to write programs that are more or less independent of a particular type of
computer. Such languages are considered high-level because they are closer to human languages and
further from machine languages. Ultimately, programs written in a high-level language must be translated
into machine language by a compiler or interpreter.

Example code: print(“Hello World!”)
High level programming languages are further divided as mentioned below.

Language Type Example
Interpreted Programming Language Python, BASIC, Lisp

Functional Programming Language Clean, Curry, F#
Compiled Programming Language C++,Java, Ada, ALGOL
Procedural Programming Language C,Matlab, CList
Scripting Programming Language PHP,Apple Script, Javascript
Markup Programming Language HTML,SGML,XML
Logical Programming Language Prolog, Fril
Concurrent Programming Language ABCL, Concurrent PASCAL
Object Oriented Programming Language C++,Ada, Java, Python

Interpreted Programming Language:
Interpreter is a program that executes instructions written in a high-level language.
An interpreter reads the source code one instruction or one line at a time, converts this line into

machine code and executes it.

Compiled Programming Languages
Compile is to transform a program written in a high-level programming language from source

code into object code. This can be done by using a tool called compiler.
A compiler reads the whole source code and translates it into a complete machine code program to

perform the required tasks which is output as a new file.

Figure : Interpreter

Figure: Compiler

12

High – level Language:
A high-level language (HLL) is a programming language such as C, FORTRAN, or Pascal that

enables a programmer to write programs that are more or less independent of a particular type of
computer. Such languages are considered high-level because they are closer to human languages and
further from machine languages. Ultimately, programs written in a high-level language must be translated
into machine language by a compiler or interpreter.

Example code: print(“Hello World!”)
High level programming languages are further divided as mentioned below.

Language Type Example
Interpreted Programming Language Python, BASIC, Lisp

Functional Programming Language Clean, Curry, F#
Compiled Programming Language C++,Java, Ada, ALGOL
Procedural Programming Language C,Matlab, CList
Scripting Programming Language PHP,Apple Script, Javascript
Markup Programming Language HTML,SGML,XML
Logical Programming Language Prolog, Fril
Concurrent Programming Language ABCL, Concurrent PASCAL
Object Oriented Programming Language C++,Ada, Java, Python

Interpreted Programming Language:
Interpreter is a program that executes instructions written in a high-level language.
An interpreter reads the source code one instruction or one line at a time, converts this line into

machine code and executes it.

Compiled Programming Languages
Compile is to transform a program written in a high-level programming language from source

code into object code. This can be done by using a tool called compiler.
A compiler reads the whole source code and translates it into a complete machine code program to

perform the required tasks which is output as a new file.

Figure : Interpreter

Figure: Compiler

12

High – level Language:
A high-level language (HLL) is a programming language such as C, FORTRAN, or Pascal that

enables a programmer to write programs that are more or less independent of a particular type of
computer. Such languages are considered high-level because they are closer to human languages and
further from machine languages. Ultimately, programs written in a high-level language must be translated
into machine language by a compiler or interpreter.

Example code: print(“Hello World!”)
High level programming languages are further divided as mentioned below.

Language Type Example
Interpreted Programming Language Python, BASIC, Lisp

Functional Programming Language Clean, Curry, F#
Compiled Programming Language C++,Java, Ada, ALGOL
Procedural Programming Language C,Matlab, CList
Scripting Programming Language PHP,Apple Script, Javascript
Markup Programming Language HTML,SGML,XML
Logical Programming Language Prolog, Fril
Concurrent Programming Language ABCL, Concurrent PASCAL
Object Oriented Programming Language C++,Ada, Java, Python

Interpreted Programming Language:
Interpreter is a program that executes instructions written in a high-level language.
An interpreter reads the source code one instruction or one line at a time, converts this line into

machine code and executes it.

Compiled Programming Languages
Compile is to transform a program written in a high-level programming language from source

code into object code. This can be done by using a tool called compiler.
A compiler reads the whole source code and translates it into a complete machine code program to

perform the required tasks which is output as a new file.

Figure : Interpreter

Figure: Compiler

13

Interpreted vs. Compiled Programming Language
Interpreted Programming Language Compile Programming Language
Translates one statement at a time Scans entire program and translates it as whole

into machine code
It takes less amount of time to analyze the
source code but the overall execution time is
slower

It takes large amount of time to analyze the
source code but the overall execution time is
comparatively faster

No intermediate object code is generated,
hence are memory efficient

Generates intermediate object code which
further requires linking, hence requires more
memory

Continues translating the program until first
error is met, in which case it stops. Hence
debugging is easy.

It generates the error message only after
scanning the whole program. Hence debugging
is comparatively hard.

Eg: Python, Ruby Eg: C,C++,Java

3.ALGORITHMIC PROBLEM SOLVING:

Algorithmic problem solving is solving problem that require the formulation of an
algorithm for the solution.

Understanding the Problem
 It is the process of finding the input of the problem that the algorithm solves.
 It is very important to specify exactly the set of inputs the algorithm needs to handle.
 A correct algorithm is not one that works most of the time, but one that works

Correctly for all legitimate inputs.

13

Interpreted vs. Compiled Programming Language
Interpreted Programming Language Compile Programming Language
Translates one statement at a time Scans entire program and translates it as whole

into machine code
It takes less amount of time to analyze the
source code but the overall execution time is
slower

It takes large amount of time to analyze the
source code but the overall execution time is
comparatively faster

No intermediate object code is generated,
hence are memory efficient

Generates intermediate object code which
further requires linking, hence requires more
memory

Continues translating the program until first
error is met, in which case it stops. Hence
debugging is easy.

It generates the error message only after
scanning the whole program. Hence debugging
is comparatively hard.

Eg: Python, Ruby Eg: C,C++,Java

3.ALGORITHMIC PROBLEM SOLVING:

Algorithmic problem solving is solving problem that require the formulation of an
algorithm for the solution.

Understanding the Problem
 It is the process of finding the input of the problem that the algorithm solves.
 It is very important to specify exactly the set of inputs the algorithm needs to handle.
 A correct algorithm is not one that works most of the time, but one that works

Correctly for all legitimate inputs.

13

Interpreted vs. Compiled Programming Language
Interpreted Programming Language Compile Programming Language
Translates one statement at a time Scans entire program and translates it as whole

into machine code
It takes less amount of time to analyze the
source code but the overall execution time is
slower

It takes large amount of time to analyze the
source code but the overall execution time is
comparatively faster

No intermediate object code is generated,
hence are memory efficient

Generates intermediate object code which
further requires linking, hence requires more
memory

Continues translating the program until first
error is met, in which case it stops. Hence
debugging is easy.

It generates the error message only after
scanning the whole program. Hence debugging
is comparatively hard.

Eg: Python, Ruby Eg: C,C++,Java

3.ALGORITHMIC PROBLEM SOLVING:

Algorithmic problem solving is solving problem that require the formulation of an
algorithm for the solution.

Understanding the Problem
 It is the process of finding the input of the problem that the algorithm solves.
 It is very important to specify exactly the set of inputs the algorithm needs to handle.
 A correct algorithm is not one that works most of the time, but one that works

Correctly for all legitimate inputs.

14

Ascertaining the Capabilities of the Computational Device

If the instructions are executed one after another, it is called sequential algorithm

Choosing between Exact and Approximate Problem Solving
• The next principal decision is to choose between solving the problem exactly or solving it

approximately.
• Based on this, the algorithms are classified as exact algorithm and approximation

algorithm.
• Data structure plays a vital role in designing and analysis the algorithms.
• Some of the algorithm design techniques also depend on the structuring data specifying a

problem’s instance
• Algorithm+ Data structure=programs.

Algorithm Design Techniques
• An algorithm design technique (or “strategy” or “paradigm”) is a general approach to solving

problems algorithmically that is applicable to a variety of problems from different areas of
computing.

• Learning these techniques is of utmost importance for the following reasons.
• First, they provide guidance for designing algorithms for new problems,

Second, algorithms are the cornerstone of computer science.

Methods of Specifying an Algorithm
• Pseudocode is a mixture of a natural language and programming language-like constructs.

Pseudocode is usually more precise than natural language, and its usage often yields more succinct
algorithm descriptions.In the earlier days of computing, the dominant vehicle for specifying
algorithms was a flowchart, a method of expressing an algorithm by a collection of connected
geometric shapes containing descriptions of the algorithm’s steps.

• Programming language can be fed into an electronic computer directly. Instead, it needs to be
converted into a computer program written in a particular computer language. We can look at such
a program as yet another way of specifying the algorithm, although it is preferable to consider it as
the algorithm’s implementation.

• Once an algorithm has been specified, you have to prove its correctness. That is, you have to
prove that the algorithm yields a required result for every legitimate input in a finite amount of
time.

• A common technique for proving correctness is to use mathematical induction because an
algorithm’s iterations provide a natural sequence of steps needed for such proofs.

• It might be worth mentioning that although tracing the algorithm’s performance for a few specific
inputs can be a very worthwhile activity, it cannot prove the algorithm’s correctness conclusively.
But in order to show that an algorithm is incorrect, you need just one instance of its input for
which the algorithm fails.

Analyzing an Algorithm

1. Efficiency.
Time efficiency: indicating how fast the algorithm runs,
Space efficiency: indicating how much extra memory it uses

15

2. simplicity.
 An algorithm should be precisely defined and investigated with mathematical

expressions.
 Simpler algorithms are easier to understand and easier to program.
 Simple algorithms usually contain fewer bugs.

Coding an Algorithm
 Most algorithms are destined to be ultimately implemented as computer programs.

Programming an algorithm presents both a peril and an opportunity.
 A working program provides an additional opportunity in allowing an empirical analysis

of the underlying algorithm. Such an analysis is based on timing the program on several
inputs and then analyzing the results obtained.

4.Simple strategies for developing algorithm:
They are two commonly used strategies used in developing algorithm

1. Iteration
2. Recursion

Iteration
• The iteration is when a loop repeatedly executes till the controlling condition becomes false

• The iteration is applied to the set of instructions which we want to get repeatedly executed.
• Iteration includes initialization, condition, and execution of statement within loop and update

(increments and decrements) the control variable.
A sequence of statements is executed until a specified condition is true is called iterations.

1. for loop

2. While loop
Syntax for For: Example: Print n natural numbers

FOR(start-value to end-value) DO
statement

... ENDFOR

BEGIN
GET n
INITIALIZE i=1
FOR (i<=n) DO

PRINT i
i=i+

1
ENDFOR
END

Syntax for While: Example: Print n natural numbers

WHILE (condition) DO
statement
...

ENDWHILE

BEGIN
GET n
INITIALIZE i=1
WHILE(i<=n) DO

PRINT i
i=i+1

ENDWHILE
END

16

Recursions:
 A function that calls itself is known as recursion.
 Recursion is a process by which a function calls itself repeatedly until some specified condition has

beensatisfied.

Algorithm for factorial of n numbers using recursion:

Main function:
Step1: Start
Step2: Get n
Step3: call factorial(n)
Step4: print fact
Step5: Stop

Sub function factorial(n):
Step1: if(n==1) then fact=1 return fact
Step2: else fact=n*factorial(n-1) and return fact

17

FLOW CHART

Pseudo code for factorial using recursion:

Main function:

BEGIN
GET n
CALL
factorial(n)
PRINT fact
BIN

Sub function factorial(n):

IF(n==1) THEN
fact=1
RETURN fact

ELSE
RETURN fact=n*factorial(n-1)

18

5. ILLUSTRATIVE PROBLEMS
1. Guess an integer in a range
Algorithm:

Step1: Start
Step 2: Declare n, guess
Step 3: Compute guess=input
Step 4: Read guess
Step 5: If guess>n, then

Print your guess is too high
Else

Step6:If guess<n, then
Print your guess is too low

Else
Step 7:If guess==n,then

Print Good job
Else

Nope
Step 6: Stop

Pseudocode:
BEGIN
COMPUTE guess=input
READ guess,
IF guess>n
PRINT Guess is high
ELSE
IF guess<n
PRINT Guess is low
ELSE
IF guess=n
PRINT Good job

ELSE
Nope
END

19

Flowchart:

Read n

Read
Guess number

Guess=input

If Guess>n

If Guess<n

If Guess==n

nope

Your guess is
too high

Your guess
is too low

Good job

Stop

Start

20

2.Find minimum in a list
Algorithm:

Step 1: Start
Step 2: Read n
Step 3:Initialize i=0
Step 4: If i<n, then goto step 4.1, 4.2 else goto step 5
Step4.1: Read a[i]
Step 4.2: i=i+1 goto step 4
Step 5: Compute min=a[0]
Step 6: Initialize i=1
Step 7: If i<n, then go to step 8 else goto step 10
Step 8: If a[i]<min, then goto step 8.1,8.2 else goto 8.2
Step 8.1: min=a[i]
Step 8.2: i=i+1 goto 7
Step 9: Print min
Step 10: Stop

Pseudocode:
BEGIN
READ n
FOR i=0 to n, then
READ a[i]
INCREMENT i
END FOR
COMPUTE min=a[0]
FOR i=1 to n, then
IF a[i]<min, then
CALCULATE min=a[i]
INCREMENT i
ELSE
INCREMENT i
END IF-ELSE
END FOR
PRINT min
END

21

Flowchart:

22

3. Insert a card in a list of sorted cards

Algorithm:
Step 1: Start
Step 2: Read n
Step 3:Initialize i=0
Step 4: If i<n, then goto step 4.1, 4.2 else goto step 5
Step4.1: Read a[i]
Step 4.2: i=i+1 goto step 4
Step 5: Read item
Step 6: Calculate i=n-1
Step 7: If i>=0 and item<a[i], then go to step 7.1, 7.2 else goto step 8
Step 7.1: a[i+1]=a[i]
Step 7.2: i=i-1 goto step 7
Step 8: Compute a[i+1]=item
Step 9: Compute n=n+1
Step 10: If i<n, then goto step 10.1, 10.2 else goto step 11
Step10.1: Print a[i]
Step10.2: i=i+1 goto step 10
Step 11: Stop

Pseudocode:
BEGIN
READ n
FOR i=0 to n, then
READ a[i]
INCREMENT i
END FOR
READ item
FOR i=n-1 to 0 and item<a[i], then
CALCULATE a[i+1]=a[i]
DECREMENT i
END FOR
COMPUTE a[i+1]=a[i]
COMPUTE n=n+1
FOR i=0 to n, then
PRINT a[i]
INCREMENT i
END FOR
END

23

Flowchart:

24

4.Tower of Hanoi
Tower of Hanoi, is a mathematical puzzle which consists of three towers (pegs) and more

than one rings.
Tower of Hanoi is one of the best example for recursive problem solving.

Pre-condition:
These rings are of different sizes and stacked upon in an ascending order, i.e. the smaller

one sits over the larger one. There are other variations of the puzzle where the number of disks
increase, but the tower count remains the same.

Post-condition:
All the disk should be moved to the last pole and placed only in ascending order as shown

below.

Rules
The mission is to move all the disks to some another tower without violating the sequence

of arrangement. A few rules to be followed for Tower of Hanoi are
• Only one disk can be moved among the towers at any given time.
• Only the "top" disk can be removed.
• No large disk can sit over a small disk.

Tower of Hanoi puzzle with n disks can be solved in minimum 2n−1 steps. This presentation
shows that a puzzle with 3 disks has taken 23 - 1 = 7 steps.
Algorithm
To write an algorithm for Tower of Hanoi, first we need to learn how to solve this problem with
lesser amount of disks, say → 1 or 2. We mark three towers with name, source, aux (only to help
moving the disks) and destination.
Input: one disk

If we have only one disk, then it can easily be moved from source to destination peg.
Input: two disks
If we have 2 disks −

• First, we move the smaller (top) disk to aux peg.
• Then, we move the larger (bottom) disk to destination peg.
• And finally, we move the smaller disk from aux to destination peg.

Input: more than two disks
• So now, we are in a position to design an algorithm for Tower of Hanoi with more than

two disks. We divide the stack of disks in two parts. The largest disk (nth disk) is in one
part and all other (n-1) disks are in the second part.

25

• Our ultimate aim is to move disk n from source to destination and then put all other (n1)
disks onto it. We can imagine to apply the same in a recursive way for all given set of
disks.

• The steps to follow are –
Step 1 − Move n-1 disks from source to aux
Step 2 − Move nth disk from source to dest
Step 3 − Move n-1 disks from aux to dest

A recursive algorithm for Tower of Hanoi can be driven as follows –
START
Procedure Hanoi(disk, source, dest, aux)
IF disk == 1, THEN

move disk from source to dest
ELSE

Hanoi(disk - 1, source, aux, dest) // Step 1
move disk from source to dest // Step 2
Hanoi(disk - 1, aux, dest, source) // Step 3

END IF
END Procedure
STOP

26

FLOW CHART Start

Enter disk i.e number
of disks

Call the function
Hanoi(n,A,C,B)

If disk==1?

Print move disk from
A to C

Call function Hanoi with
disk-1,A,B,C

Print move disk
from A to C

Call function Hanoi
with disk-1,C,A,B

Return

Stop

27

5. Draw a flow chart to find greatest among three numbers.(AU 2018)

6. Draw a flow chart to find sum of n numbers(AU 2018)

28

2 MARKS

1. What is an algorithm?
An algorithm is a finite number of clearly described, unambiguous do able steps that

can be systematically followed to produce a desired results for given input in the given amount
of time. In other word, an algorithm is a step by step procedure to solve a problem with finite
number of steps.

2. What is Pseudo code?
Pseudocode is an informal high-level description of the operating principle of a

computer program or algorithm. Pseudo means false and code refers to instructions
written in programming language.

3. What is Problem Solving?
Problem solving is the systematic approach to define the problem and creating

number of solutions. The problem solving process starts with the problem specifications
and ends with a correct program.

4. Distinguish between algorithm and program.

Algorithm Program
1. Systematic logical approach which is a

well-defined, step-by-step procedure that
allows a computer to solve a problem.

It is exact code written for
problem following all the rules of the

programming language.

2. An algorithm is a finite number of clearly
described, unambiguous do able steps that
can be systematically followed to produce
a desired results for given input in the
given amount of time.

The program will accept the data to
perform computation.

Program=Algorithm + Data

5. Define Flow chart.
A graphical representation of an algorithm. Flow charts is a diagram made up of

boxes, diamonds, and other shapes, connected by arrows.

6. Write an algorithm to accept two numbers, compute the sum and print the result.
Step 1: Start
Step 2: Declare variables num1,num2 and sum,
Step 3: Read values num 1 and num2.
Step 4: Add and assign the result to sum.

Sum←num1+num2
Step 5: Display sum

29

7. Differentiate between iteration and recursion.

S.No Iteration Recursion
1. Iteration is a process of executing

certain set of instructions repeatedly,
without calling the self function.

Iteration is a process of
executing certain set of
instructions repeatedly, by
calling the self function
repeatedly.

2. Iterative methods are more efficient
because of better execution speed.

Recursive methods are less
efficient.

3. It is simple to implement. Recursive methods are complex
to implement.

8. What is Programming language? With example.
Programming Language is a formal language with set of instruction, to the

computer to solve a problem. Java, C, C++, Python, PHP.

9. What are the steps for developing algorithms.
• Problem definition
• Development of a model
• Specification of Algorithm
• Designing an Algorithm
• Checking the correctness of Algorithm
• Analysis of Algorithm
• Implementation of Algorithm
• Program testing
• Documentation Preparation

10. What are the Guidelines for writing pseudo code?

• Write one statement per line
• Capitalize initial keyword
• Indent to hierarchy
• End multiline structure
• Keep statements language independent.


30

11.Draw a flow chart to find whether the given number is leap year or not.

Start

Read year

If
(year%4==0)

Print ‘Leap year’ Print ‘Not Leap year’

Stop

	Building Blocks of Algorithm
	Statements
	States
	Control Flow
	Sequential control flow:
	Selection or Conditional control flow
	Repetition control flow

	Function

	2.NOTATIONS OF AN ALGORITHM
	Pseudocode
	Basic rules to write pseudocode:
	Advantages of Pseudocode
	Disadvantages of Pseudocode

	Flowchart
	Rules for drawing flowchart
	Advantages of Flowchart
	Disadvantages of Flowchart

	Control Structures using flowcharts and Pseudocode
	Sequence Structure
	Conditional Structure

	Programming Language
	Need for Programming Languages
	Types of Programming Language

	Logical Programming Language
	Interpreted Programming Language:
	Compiled Programming Languages
	Interpreted vs. Compiled Programming Language
	4.Simple strategies for developing algorithm:
	 Iteration

	 Recursions:
	Algorithm for factorial of n numbers using recursion:
	 Main function:
	Sub function factorial(n):
	Pseudo code for factorial using recursion:
	 Main function:
	Sub function factorial(n):
	What are the Guidelines for writing pseudo code?

