UNIT V
SEARCHING, SORTING, HASHING

Searching- Linear Search - Binary Search.
Sorting - Bubble sort - Selection sort - Insertion
sort - Shell sort - Radix sort. Hashing- Hash
Functions - Separate Chaining - Open
Addressing - Rehashing - Extendible Hashing.

SEARCHING

Searching is an operation or a technique that helps finds the
place of a given element or value in the list.

Any search is said to be successful or unsuccessful
depending upon whether the element that is being search is
found or not. There are two types of searching as follows.

V' Linear Search
v Binary Search

LINEAR SEARCH.

In Linear search, searching an element of value in a given
array by traversing the array from starting till the desired
element or value is found.

It compares the element to be searched with all the
elements present in the array and when the element is
matched successfully, it returns the index of the element in
the array. Else it returns -1.

Linear search is applied on unsorted or unordered list, when
there are fewer elements in a list.

Linear Search
Find '20'

N i
0 1 2 3 4 5 6 7 8
10]50]30]70] 80f 60[20[90] 40

LINEAR SEARCH

Linear Search (Array A, Value x)
Step 1: Setito 1

Step 2:ifi > n then go to step 7
Step 3: if A[i] = x then go to step 6
Step 4:Setitoi+1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to
step 8

Step 7: Print element not found
Step 8: Exit

BINARY SEARCH

v Binary search looks for a particular item by comparing the
middle most item of the collection.

V' If a match occurs, then the index of item is returned.

V' If the middle item is greater than the item, then the item is
searched in the sub-array to the left of the middle item.

v Otherwise, the item is searched for in the sub-array to the
right of the middle item.

v This process continues on the sub-array as well until the
size of the sub array reduces to zero.

Search 23

23>16
take 2™ hatf

23>56
take 1* half

Found 23,
Return 5

Binary Search

0 1 Z 3 4 5 6 7 8 9
-ﬂ-
BE0EDDEDDE

0
215 [8 [12]16 [23] se 88 7] o1

7

2[5 [[12 e @8] 8] 5] 72] o1

BINARY SEARCH

Step 1 — Start searching data from middle of the list.
Step 2 — If it is a match, return the index of the item, and exit.
Step 3 — If it is not a match, probe position.

Step 4 — Divide the list using probing formula and find the new
middle.

Step 5 — If data is greater than middle, search in higher sub-
list.

Step 6 — If data is smaller than middle, search in lower sub-list.
Step 7 — Repeat until match.

LINEAR SEARCH VS BINARY SEARCH.

Linear Search

Basis Binary Search
Prerequusite for an array | No requured Array must be in sorted order
. . . Cannot be directly implemented on

Can be implemented on Array and Linked list . . ’
linked hist

Algorithm fype [terative in nature Divide and conquer 1n nature
Anyhow tricky algorithm and

Easy to use and no need for any L
Usefulness elements should be organized i

ordered elements.

order.

Worst case for N number

N comparisons are required

Can conclude after only log2N

of elements COMpArisons
Best case time First Element O(1) Centre Element O(1)
Time Complexify O(N) O(log N)

BUBBLE SORT

Bubble sort is a sorting algorithm that works by repeatedly
stepping through lists that need to be sorted, comparing
each pair of adjacent items and swapping them if they are in
the wrong order.

v This passing procedure is repeated until no swaps are
required, indicating that the list is sorted.

v/ Bubble sort gets its name because smaller elements
bubble toward the top of the list.

v/ Bubble sort is also referred to as Sinking Sort or
Comparison Sort.

BUBBLE SORT

Algorithm Bubble_Sort(A[O,1,....n-1])
Input:An array of elements A[O,1,....n-1]
Output: The sorted array A[O,1,....n-1]
fori=1ton-2 do

{

for j=0 to n-2-1 do

{

if (A[j]>A[j+1]) then

{

temp=A[j]

Alj]= A[j+1]

A[j+1]=temp

}

}

BUBBLE SORT

Iniitial

step 1

step 2

Step 3

Step 4

step 5

Bubble sort example

L
8 4 o

¥ 4
5 a8 4 o
¥ ¥
5 4 a8 o

Initial Unsorted array

Compare 1¥ and 2™

(Swap)
Compare 2™ and 3™
(Do not Swap)
Compare 3 and 47

(Swap)

Compare 47 and 57

(Swap)

Repeat Step 1-5 until
no more swaps required

SELECTION SORT

v/ The selection sort algorithm sorts an array by repeatedly
finding the minimum element (considering ascending order)
from unsorted part and putting it at the beginning.

v/ The algorithm maintains two subarrays in a given array.
> The subarray which is already sorted.
> Remaining subarray which is unsorted.

v In every iteration of selection sort, the minimum element
(considering ascending order) from the unsorted subarray is
picked and moved to the sorted subarray.

SELECTION SORT

Algorithm Selection_Sort(A[O,1,....n-1])
Input:An array of elements A[O,1,....n-1] that is to be sorted.
Output: The sorted array A[O,1,....n-1]
fori=1ton-1

{

min = i

forj=i+1ton

{

if list[j] < list[min] then

{

min = j;

}

}

if indexMin != i then

{

swap (listfmin], list[i]);

i

SELECTION SORT

Selection Sort

W W W W W W

r swap ——
29-7 72 o8 13 87 66 52 51 36
r swap——
13 7ﬂ o8 29 87 66 52 51 36
¥ swap 1
13 29 QQ 72 87 66 52 51 36
hswa pP—
13 29 36 7g 87 66 52 51 S8
— r swap—y
13 29 36 51 87 II 66 52 72 S8
. w no swap
13 29 36 51 52 66 87 72 S8
sta P—
13 29 36 51 52 66 BQ 72 98
* no swap
13 29 36 51 52 66 72 87 S8
13 29 36 51 52 66 72 87 oS8

13 is smallest

29 is smaliest

36 is smmaliest

51 is smallest

52 is smmaliest

66 is smmallest

no swapping

72 is smallest

87 is smallest
no swapping

sorting completed

INSERTION SORT

V' Insertion sort is a sorting algorithm in which the elements
are transferred one at a time to the right position.

V' In other words, an insertion sort helps in building the final
sorted list, one item at a time, with the movement of higher-
ranked elements.

v/ An insertion sort has the benefits of simplicity and low
overhead.

INSERTION SORT

Algorithm Insertion_Sort(A[O,1,....n-1])
Input: An array of elements A[O,1,....n-1] that is to be sorted.
Output: The sorted array A[O,1,....n-1]
fori=1ton-1 do

{

temp=A[i]

j=i-1

while(j>=0) AND (A[j]>temp) do

{

Alj+1]= Al]

I7iFL

}

A[j+1])=temp

3}

INSERTION SORT

Insertion Sort

[85| 12| 59 | 45 | 72 | 51
C I| 85| 59| 45| 72| H1
12| 85| 59 | 45 | 72 | 51
c 12 85| 45| 72 | 51
12| 59 | 85| 45 | 72 | 51
12| 59 85| 72| 51
12 85| 72| 51

Assume B5 is a

sorted list of
1st itemn

85=12 , shift
it to the right

s0 insert 12
in that place

85=59 | shift
it to the right

12<59, s0
insert 59 in
that place

B85>45 , shift
it to the right

59>45 , shift
it to the right

-

MLIBEBEBEAID

12| 45| 59 | 85 | 72 | 51
12| 45| 59 ‘ 85| 51
e
12| 45| 59 | 72 | 85 | 51
'L'J
12| 45| 59 | 72 85
12| 45| 59 72| 85
12 | 45 59| 72| 85
12| 45| 51 | 59 | 72 | 85
_—

12<45, so
insert 45 in
that place

B85=72 , shift
it to the right

859<T72, s0
insert 72 in
that place

85>51 , shift
it to the right

72>51 , shift
it to the right

59=51 , shift
it to the right

45<51, so
insert 51 in
that place

C wiresource.com

v Shell sort improves bubble sort and insertion sort by moving
out of order elements more than one at at time.

V' It works arranging the data sequence in a two dimensional
array and then sorting the columns of the array using insertion
sort.

v In shell sort the whole array is first fragmented into K segments
where K is preferably a prime number.

v After the first pass the whole array is partially sorted.

v In the next pass, the value of K is reduced which increases the
size of each segment and reduces the number of segments.

v/ The next value of K is chosen so that it is relatively prime to its
previous value.

v The process is repeated until K=1, at while the array is sorted.

v/ The insertion sort is applied to each segment so each
successive segment is partially sorted.

v The shell sort is also called as “Diminishing Increment Sort”,
because the value of K decreases continuously.

SHELL SORT

void Shell_sort(int A[],int N)

{

int i,j,k,temp;
for(k=N/2;k>0;k=k/2)
for(i=k;i<N;i++)

{

temp=A[i];

for(j=i;j>=k; && A[j-k]>temp;j=j-k)
{

A[]=ALK]

}

Alj]=temp;

}

J

SHELL SORT

20 12 65 8 10 16 43 35 23 8 2 56 41 27 67 56
r g 1 1 e ¥) h 1
L______;_d______} ________ L ______ ul T : I : T |
L= —f—- - | |
S M [e Y S | B N e ST D S g = |
B e e it B, oy e R s et i S e -
20 12 2 8 10 16 43 35 23 8 65 56 41 27 67 56
T A A A T A A A T A A A T o T A
| H | : | : (!
RS . T e _L______% _______ _L______4: _______ il i
10 12 2 8 20 16 43 35 23 27 65 56 41 88 67 56
ey 1 % 1T r 1 % T & 1T ¢ F & 97 7
| e L 1 1 1 1 | W .
2 8 10 12 20 16 23 27 41 35 43 56 65 56 57 88
G N N N B O O O O A O O O
2 8 10 12 16 20 23 27 35 41 43 56 56 65 67 83

RADIX SORT

v/ Radix sort is one of the sorting algorithms used to sort a
list of integer numbers in order.

V' In radix sort algorithm, a list of integer numbers will be
sorted based on the digits of individual numbers.

v Sorting is performed from least significant digit to the
most significant digit.

v/ Radix sort algorithm requires the number of passes which
are equal to the number of digits present in the largest
number among the list of numbers.

v/ For example, if the largest number is a 3 digit number
then that list is sorted with 3 passes.

RADIX SORT

[L O A) s) ’ D s pew -t e

[ST 1 onadll) ke o gie dbiesr s clt OO | T
bardticmmnrt: edligylt: Coonrmcme (polle

XD,

L

o molll Ll LA Tkt
et donnr e IHel:

L TR MBI] Cahces nu el 54 Ahocd TIRAED D rboay (1 Degoy 3
! S0 Tt alibgits Cutmermme ollan st oREQAND o

wrecuggn calll Cinga ol 1 ¢ ;

)
ccxourmalbohne o ISE Tlow wrpsstsil afilesgro sone Brnpoanits §at,

SRCTTUAT | RS | 1 50
oot ik @-Hlum

o
| B eRn

D e e e S P ¢ i ARAT——C Qparemire €0 ADaraare P

L ANl ocsine s BRI O G) L SR | FRRS [S

st oo w s Sllleoqpe s 0 jEe

HASHING AND HASH TABLE.

Hash Table: It is a data structure used for storing and
retrieving data quickly. Every entry in the hash table is
made using Hash function.

Hash function is used to place data in the hash table. It is
also used to retrieve data from hash table.

Hash function is Hash (Key) =Keyvalue % TableSize

HASH FUNCTION

Hash(Char *key, int TableSize)
{

int HashValue=0;
while(*key!="\0")
HashValue+=*key++;

return HashValue % TableSize;

}

PROPERTIES OF HASH FUNCTION

v/ The hash function should be simple to compute.

v Number of collision should be less while placing the
record in the hash table. Ideally no collision should occur.
Such a function is called Perfect Hash Function.

v/ Hash function should produce such keys which will get
distributed uniformly over an array.

v/ The hash function should depend on every bit of the key.
Thus the hash function that simply extracts the portion of a
key is not suitable.

COLLISION AND COLLISION RESOLUTION,

A Collision occurs when two or more elements are hashed

(mapped) to same value that is when two key values hash to
the same position.

Collision Resolution:

When two items hash to the same slot, there is a systematic
method for placing the second item in the hash table. This
process is called collision resolution.

COLLISION RESOLUTION TECHNIQUES

> Separate Chaining

> Open Addressing (Closed Hashing)
v Linear Probing

v Quadratic Probing

v Double Hashing

> Multiple Hashing

SEPARATE CHAINING

> Separate Chaining is an open addressing.

> A pointer field is added to each location. When an overflow occurs
this pointer is set to point to overflow blocks making a linked list.

> |n this method, the table can never overflow, since the linked list
Advantage:

> More number of elements can be inserted.

> Disadvantages;

> |t requires pointers, which occupies more memory space.

> |t takes more effort to perform a search. are only extended upon
the arrival of new keys.

SEPARATE CHAINING

]

!

4371 | +—

.|-i

1323 4+ 6173 | +—_

3

4344 | -

i

T

4199 » 9679 » 1989

Y

I

OPEN ADDRESSING

Open addressing also called as Closed Hashing. It is an
alternative to resolve the collision.

In this hashing if collision occurs, alternative cells are tried until
an empty cell is found.

linear probing works:

> In linear probing, the position in which a key can be stored is
found by sequentially searching all position starting from the

position calculated by the hash function until an empty cell is
found.

> |If the end of the table is reached and no empty cell has
been found, then the search is continued from the beginning of
the table.

> |t has a tendency to create clusters in the table.

Linear Probing Example

msert(76) msert(93) insert(40) msert(47) insert(10) insert(55)
T6%7 =6 93%7 =12 40%7 =5 47%7 =5 10%7 =13 55%7 =6

0 0 0 D47 []47 D47
1 1 1 1 1 155
: %193 %l 93 * 93 ?l 93 *1 93
3 3 3 3 310 310
4 4 4 4 4 4

? : ’| 40 °| 40 ’| 40 ’1 40
®l 76 ° 76 ° 76 ® 76 °l76 °l 76

probes: 1 1 1 3 1 3

QUADRATIC PROBING

Quadratic probing is that if the element is inserted into a
space that is filled, then 17°2=1 element away then 272=4
element away, then 372=9 elements away then 4*2=16
elements away and so on is checked

Probe Sequence is For example Tablesize=16

h(k) mod Tablesize First element to Index2.

(h(k)+1) mod Tablesize Second element to 3.[(2+1)%16]
(h(k)+4) mod Tablesize Third element to 6.[(2+4)%16]
(h(k)+9) mod Tablesize Fourth element to 11[(2+9)%16].

\l .| \\\ \‘

,,,,,,,

msert(76) imsert(40) - insert(48) - msert(S) - insert(S5)
9475

1]

Quadratic Probing Example

76%7 = 6

¥

l |
) 2
| 3

2= 1 T

48%7 = 6
i

1

Il

i

1=

=S

[

35%7 =6

n

W

A‘l.\ 'l.\\\‘\ \

+ findEntry using quadratic probing:
bool findéntry (const Key & k, Entry 46 entry) |
int probePoint = hash, (k), nunProbes = 0;
do |
entry = Gtable[probePoint);
nusbrcbests; |
probePoint = (probePoint + 2tnuaProbes - 1) ¥ size;
) while ('entry=>isEmpty() && entry=>key '= key);
veturn lentry->isEapty|();

}

DOUBLE HASHING

One choice to choose a prime R< size and hash2(x)=R-(X mod R)

Double Hashing Example

mnsert(76) nsert(93) insert(40) insert(47) msert(10) msert(55)
76%T7=06 93%7=2 40%7 =5 47%7 =5 10%7 =3 55%7 =46

5 (47%5) =3 5-(55%5)=>5

0 0 0 0 0 0

! ! ! Y47 47 47
2 203 2193 2193 ? o3 ? o3
3 3 3 3 3 10 3 10
4 4 4 4 4 4 55
: : ’| 40 ’| 40 ’| 40 * 40
® 76 °76 ° 76 °76 °l 76 ® 76

probes: 1 1 1 2 1 2

REHASHING

> |f the table gets too full, then the rehashing method builds a
new table that is about twice as big and scans down the entire
original hash table, computing the new hash value for each
element and inserting it in the new table.

> For example Old Tablesize is 7 and the size of the new table
Is 17, as this is the first prime number that as twice as large as
the old table size.

Rehashing can be implemented in several ways such as
 Rehash as soon as the table is full.

 Rehash only when an insertion fails.

 Rehash when the table reaches a certain load factor.

O LW & W N = O

A LW b W N = O

Original Hash Table

6

15

24

13

After Inserting 23

6

15

23

24

13

m A WN = O

O ® N O

15

After Rehashing

23

24

13

15

EXTENDIBLE HASHING

A hash table in which the hash function is the last few bits of
the key and the table refer to buckets.

Table entries with the same final bits may use the same bucket.

If a bucket overflows, it splits, and if only one entry referred to
It, the table doubles in size.

If a bucket is emptied by deletion, entries using it are changed
to refer to an adjoining bucket, and the table may be halved.

