
UNIT V

SEARCHING, SORTING, HASHING

Searching- Linear Search - Binary Search.

Sorting - Bubble sort - Selection sort - Insertion

sort - Shell sort – Radix sort. Hashing- Hash

Functions – Separate Chaining – Open

Addressing – Rehashing – Extendible Hashing.

SEARCHING

 Searching is an operation or a technique that helps finds the

place of a given element or value in the list.

 Any search is said to be successful or unsuccessful

depending upon whether the element that is being search is

found or not. There are two types of searching as follows.

 ✓ Linear Search

 ✓ Binary Search

LINEAR SEARCH.

 In Linear search, searching an element of value in a given

array by traversing the array from starting till the desired

element or value is found.

 It compares the element to be searched with all the

elements present in the array and when the element is

matched successfully, it returns the index of the element in

the array. Else it returns -1.

 Linear search is applied on unsorted or unordered list, when

there are fewer elements in a list.

LINEAR SEARCH

Linear Search (Array A, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to
step 8

Step 7: Print element not found

Step 8: Exit

BINARY SEARCH

 ✓ Binary search looks for a particular item by comparing the

middle most item of the collection.

 ✓ If a match occurs, then the index of item is returned.

 ✓ If the middle item is greater than the item, then the item is

searched in the sub-array to the left of the middle item.

 ✓ Otherwise, the item is searched for in the sub-array to the

right of the middle item.

 ✓ This process continues on the sub-array as well until the

size of the sub array reduces to zero.

BINARY SEARCH

BINARY SEARCH

Step 1 − Start searching data from middle of the list.

Step 2 − If it is a match, return the index of the item, and exit.

Step 3 − If it is not a match, probe position.

Step 4 − Divide the list using probing formula and find the new

middle.

Step 5 − If data is greater than middle, search in higher sub-

list.

Step 6 − If data is smaller than middle, search in lower sub-list.

Step 7 − Repeat until match.

LINEAR SEARCH VS BINARY SEARCH.

BUBBLE SORT

 Bubble sort is a sorting algorithm that works by repeatedly

stepping through lists that need to be sorted, comparing

each pair of adjacent items and swapping them if they are in

the wrong order.

 ✓ This passing procedure is repeated until no swaps are

required, indicating that the list is sorted.

 ✓ Bubble sort gets its name because smaller elements

bubble toward the top of the list.

 ✓ Bubble sort is also referred to as Sinking Sort or

Comparison Sort.

BUBBLE SORT

Algorithm Bubble_Sort(A[0,1,….n-1])

Input:An array of elements A[0,1,….n-1]

Output: The sorted array A[0,1,….n-1]

for i=1 to n-2 do

{

for j=0 to n-2-I do

{

if (A[j]>A[j+1]) then

{

temp=A[j]

A[j]= A[j+1]

A[j+1]=temp

}

}

BUBBLE SORT

SELECTION SORT

 ✓ The selection sort algorithm sorts an array by repeatedly

finding the minimum element (considering ascending order)

from unsorted part and putting it at the beginning.

 ✓ The algorithm maintains two subarrays in a given array.

 ➢ The subarray which is already sorted.

 ➢ Remaining subarray which is unsorted.

 ✓ In every iteration of selection sort, the minimum element

(considering ascending order) from the unsorted subarray is

picked and moved to the sorted subarray.

SELECTION SORT

Algorithm Selection_Sort(A[0,1,….n-1])

Input:An array of elements A[0,1,….n-1] that is to be sorted.

Output: The sorted array A[0,1,….n-1]

for i = 1 to n – 1

{

min = i

for j = i+1 to n

{

if list[j] < list[min] then

{

min = j;

}

}

if indexMin != i then

{

swap (list[min], list[i]);

} }

SELECTION SORT

INSERTION SORT

 ✓ Insertion sort is a sorting algorithm in which the elements

are transferred one at a time to the right position.

 ✓ In other words, an insertion sort helps in building the final

sorted list, one item at a time, with the movement of higher-

ranked elements.

 ✓ An insertion sort has the benefits of simplicity and low

overhead.

INSERTION SORT

Algorithm Insertion_Sort(A[0,1,….n-1])

Input: An array of elements A[0,1,….n-1] that is to be sorted.

Output: The sorted array A[0,1,….n-1]

for i=1 to n-1 do

{

temp=A[i]

j=i-1

while(j>=0) AND (A[j]>temp) do

{

A[j+1]= A[j]

j=j-1

}

A[j+1])=temp

} }

INSERTION SORT

SHELL SORT
 ✓ Shell sort improves bubble sort and insertion sort by moving

out of order elements more than one at at time.

 ✓ It works arranging the data sequence in a two dimensional
array and then sorting the columns of the array using insertion
sort.

 ✓ In shell sort the whole array is first fragmented into K segments
where K is preferably a prime number.

 ✓ After the first pass the whole array is partially sorted.

 ✓ In the next pass, the value of K is reduced which increases the
size of each segment and reduces the number of segments.

 ✓ The next value of K is chosen so that it is relatively prime to its
previous value.

 ✓ The process is repeated until K=1, at while the array is sorted.

 ✓ The insertion sort is applied to each segment so each
successive segment is partially sorted.

 ✓ The shell sort is also called as “Diminishing Increment Sort”,
because the value of K decreases continuously.

SHELL SORT
void Shell_sort(int A[],int N)

{

int i,j,k,temp;

for(k=N/2;k>0;k=k/2)

for(i=k;i<N;i++)

{

temp=A[i];

for(j=i;j>=k; && A[j-k]>temp;j=j-k)

{

A[j]=A[j-k]

}

A[j]=temp;

}

}

SHELL SORT

RADIX SORT

 ✓ Radix sort is one of the sorting algorithms used to sort a

list of integer numbers in order.

 ✓ In radix sort algorithm, a list of integer numbers will be

sorted based on the digits of individual numbers.

 ✓ Sorting is performed from least significant digit to the

most significant digit.

 ✓ Radix sort algorithm requires the number of passes which

are equal to the number of digits present in the largest

number among the list of numbers.

 ✓ For example, if the largest number is a 3 digit number

then that list is sorted with 3 passes.

RADIX SORT

HASHING AND HASH TABLE.

 Hash Table: It is a data structure used for storing and

retrieving data quickly. Every entry in the hash table is

made using Hash function.

 Hash function is used to place data in the hash table. It is

also used to retrieve data from hash table.

 Hash function is Hash (Key) =Keyvalue % TableSize

HASH FUNCTION

Hash(Char *key, int TableSize)

{

int HashValue=0;

while(*key!=’\0’)

HashValue+=*key++;

return HashValue % TableSize;

}

PROPERTIES OF HASH FUNCTION

 ✓ The hash function should be simple to compute.

 ✓ Number of collision should be less while placing the

record in the hash table. Ideally no collision should occur.

Such a function is called Perfect Hash Function.

 ✓ Hash function should produce such keys which will get

distributed uniformly over an array.

 ✓ The hash function should depend on every bit of the key.

Thus the hash function that simply extracts the portion of a

key is not suitable.

COLLISION AND COLLISION RESOLUTION.

 A Collision occurs when two or more elements are hashed

(mapped) to same value that is when two key values hash to

the same position.

 Collision Resolution:

 When two items hash to the same slot, there is a systematic

method for placing the second item in the hash table. This

process is called collision resolution.

COLLISION RESOLUTION TECHNIQUES

➢ Separate Chaining

➢ Open Addressing (Closed Hashing)

✓ Linear Probing

✓ Quadratic Probing

✓ Double Hashing

➢ Multiple Hashing

SEPARATE CHAINING

➢ Separate Chaining is an open addressing.

➢ A pointer field is added to each location. When an overflow occurs

this pointer is set to point to overflow blocks making a linked list.

➢ In this method, the table can never overflow, since the linked list

Advantage:

➢ More number of elements can be inserted.

➢ Disadvantages;

➢ It requires pointers, which occupies more memory space.

➢ It takes more effort to perform a search. are only extended upon

the arrival of new keys.

SEPARATE CHAINING

OPEN ADDRESSING

Open addressing also called as Closed Hashing. It is an
alternative to resolve the collision.

In this hashing if collision occurs, alternative cells are tried until
an empty cell is found.

linear probing works:

➢ In linear probing, the position in which a key can be stored is
found by sequentially searching all position starting from the
position calculated by the hash function until an empty cell is
found.

➢ If the end of the table is reached and no empty cell has
been found, then the search is continued from the beginning of
the table.

➢ It has a tendency to create clusters in the table.

QUADRATIC PROBING

Quadratic probing is that if the element is inserted into a

space that is filled, then 1^2=1 element away then 2^2=4

element away, then 3^2=9 elements away then 4^2=16

elements away and so on is checked

Probe Sequence is For example Tablesize=16

h(k) mod Tablesize First element to Index2.

(h(k)+1) mod Tablesize Second element to 3.[(2+1)%16]

(h(k)+4) mod Tablesize Third element to 6.[(2+4)%16]

(h(k)+9) mod Tablesize Fourth element to 11[(2+9)%16].

DOUBLE HASHING

One choice to choose a prime R< size and hash2(x)=R-(X mod R)

REHASHING

➢ If the table gets too full, then the rehashing method builds a

new table that is about twice as big and scans down the entire

original hash table, computing the new hash value for each

element and inserting it in the new table.

➢ For example Old Tablesize is 7 and the size of the new table

is 17, as this is the first prime number that as twice as large as

the old table size.

Rehashing can be implemented in several ways such as

• Rehash as soon as the table is full.

• Rehash only when an insertion fails.

• Rehash when the table reaches a certain load factor.

EXTENDIBLE HASHING

A hash table in which the hash function is the last few bits of

the key and the table refer to buckets.

Table entries with the same final bits may use the same bucket.

If a bucket overflows, it splits, and if only one entry referred to

it, the table doubles in size.

If a bucket is emptied by deletion, entries using it are changed

to refer to an adjoining bucket, and the table may be halved.

