IIR FILTER

Mr. J.G.SABARISH M.E. Assistant Professor of ECE NPRCET

IIR FILTER

• IIR filters are of recursive type whereby the present output sample depends on the present input, past input samples and output samples.

Difference Between Analog filter and Digital filter

SI. No.	Analog Filter	Digital Filter
1	Analog filter processes analog	A digital filter processes and
	input and generates analog	generates digital data.
	outputs.	
2	Analog filters are constructed	It consists of elements like adder,
	from active or passive electronic	multiplier and delay unit.
	components.	
3	It is described by differential	It is described by difference
	equation.	equation.
4	The frequency response of an	The frequency response can be
	analog filter can be modified by	changed by changing the filter
	changing the components.	coefficients.

Procedures for digitizing the transfer function of an analog filter.

- 1. Approximation of derivative
- 2. Impulse invariant method
- 3. Bilinear transformation

Use the backward difference for the derivative to convert the analog LPF with system function H(s) = 1/(S+2)

Sol:

$$H(z) = H(s) | s = \frac{1-z^{-1}}{T}$$

$$H(z) = \frac{1}{8+2} | s = \frac{1-z^{-1}}{T}$$

$$= \frac{1}{\frac{1-z^{-1}}{T}+2} = \frac{T}{1-z^{-1}+2T}$$
Assume $T = 18$

$$H(z) = \frac{1}{1-z^{-1}+2}$$

$$H(z) = \frac{1}{3-z^{-1}}$$

Use the backward difference for the derivative to convert the analog filter with system function H(s) = $1/(s^2 + 16)$

$$H(0) = \frac{1}{s^2 + 16}$$

Sol:

$$(z) = H(s) \left|_{A=\frac{1-z^{-1}}{T}} = \frac{1}{s^{2}+1b} \right|_{S=\frac{1-z^{-1}}{T}}$$
$$H(x) = \frac{1}{\left(\frac{1-z^{-1}}{T}\right)^{2}+1b} = \frac{T^{2}}{1+z^{-2}-2z^{-1}+1bT^{2}}$$

Assume T=18

H

$$H(z) = \frac{1}{1+z^{-2}-2z^{-1}+1b}$$

$$H(x) = \frac{1}{x^2 - 2x^2 + 17}$$

Properties of impulse invariant method

$$\frac{1}{s-a} \rightarrow \frac{1}{1-e^{aT}z^{-1}}$$

$$\frac{1}{s+a} \rightarrow \frac{1}{1-e^{-aT}z^{-1}}$$

$$\frac{s+a}{(s+a)^2+b^2} \to \frac{1-e^{-aT}(\cos bT)z^{-1}}{1-2e^{-aT}(\cosh T)z^{-1}+e^{-2aT}z^{-2}}$$

$$\frac{b}{(s+a)^2+b^2} \rightarrow \frac{e^{-aT}(sin bT)z^{-1}}{1-2e^{-aT}(cosbT)z^{-1}+e^{-2aT}z^{-2}}$$

For the analog transfer function $H(s) = \frac{1}{(s+1)(s+2)}$ Determine H(z) using impulse invariant method.

Sol:
$$H(3) = \frac{1}{(S+1)(S+2)}$$
By Portial Fraction Expansion
$$H(S) = \frac{1}{(S+1)(S+2)} = \frac{A}{S+1} + \frac{B}{S+2}$$

$$I = A(S+2) + B(S+1)$$

$$S = -2 \qquad : \qquad B = -1$$

$$S = -1 \qquad : \qquad A = 1$$

$$H(S) = \frac{1}{S+1} - \frac{1}{S+2}$$

$$H(S) = \frac{1}{-1} - \frac{1}{1-e^{-T}z^{-1}} - \frac{1}{1-e^{-T}z^{-1}}$$

$$H(z) = \frac{1}{1 - e^{-1}z^{-1}} - \frac{1}{1 - e^{-2}z^{-1}}$$

$$= \frac{1 - 0 \cdot 135z^{-1} - 1 + 0 \cdot 3678z^{-1}}{(1 - 0 \cdot 357z^{-1} - 1 + 0 \cdot 3678z^{-1})}$$

$$= \frac{0.2325z^{-1}}{1 - 0.5032z^{-1}}$$

$$= \frac{0.2325z^{-1}}{2z^{-2}(z^{2} - 0.5032z^{-1} - 0.049z^{-1})}$$

$$= \frac{0.2325z^{-1}}{z^{-2}(z^{2} - 0.5032z^{-1} - 0.049z^{-1})}$$

$$H(z) = \frac{0.2325z^{-1}}{z^{-2} - 0.5032z^{-1} - 0.049z^{-1}}$$

Apply

Convert the analog filter into a digital filter where transfer function is $H(s) = \frac{s+0.2}{(s+0.2)^2+9}$. Use impulse invariant method. Assume T=1sec.

Sol: Given

$$H(s) = \frac{g + 0.2}{(s + 0.2)^2 + 9} = \frac{g + 0.2}{(s + 0.2)^2 + 3^2}$$

This system function is in the form $H(s) = \frac{S+q}{(S+q)^2 + b^2}$

٠.

$$a=0.2$$
 and $b=3$

$$\frac{S+a}{(s+a)^2+b^2} \Rightarrow \frac{1-e^{-aT}(s+a)^2}{1-2e^{-aT}(s+a)^2+b^2}$$

$$H(z) = \frac{1 - e^{-0.2T} (\omega 3T) z^{-1}}{1 - 2e^{-0.2T} (\omega 3T) z^{-1} + e^{-0.4T} z^{-2}}$$

Sub
$$T = 1 \sec c$$

$$= \frac{1 - e^{-0.2} (w + 3) z^{-1}}{1 - 2e^{-0.2} (w + 3) z^{-1} + e^{-0.4} z^{-2}}$$

$$= \frac{1 - 0.8187 (-0.99) z^{-1}}{1 - 2 (0.8187) (-0.99) z^{-1} + 0.6703 z^{-2}}$$

$$= \frac{1 + 0.8105 z^{-1}}{1 + 0.6705 z^{-1}}$$

Bilinear Transformation

- The bilinear transformation is a mapping that transforms the left half of s-plane into the unit circle in the z-plane only once, thus avoiding aliasing of frequency components.
- The mapping from the s-plane to z-plane in bilinear transformation is

$$s = \frac{2}{T} \frac{(z-1)}{(z+1)}$$

- All points in the LHP of s-plane are mapped inside the unit circle in the z-plane and all points in the RHP of s-plane are mapped inside the unit circle in the z-plane
- For smaller values of ω there exist linear relationship between ω and $\Omega.$ that is ω = ΩT
- But for larger values of ω the relationship is non-linear. This effect is known as warping effect. This effect compresses the magnitude and phase response at high frequencies.
- The warping effect can be eliminated by prewarping the analog filter. This can be done by finding prewarping analog frequencies using the formula

$$\Omega = \frac{2}{T} \tan \frac{\omega}{2}$$

Convert the analog filter into a digital IIR filter use bilinear transformation with system function is $H(s) = \frac{2}{(s+1)(s+2)}$. Assume T=0.1sec.

Given
$$H(s) = \frac{2}{(s+1)(s+2)}$$

Apply
$$s = \frac{2}{T} \frac{(z-1)}{(z+1)}$$
 for the above eqn

$$H(z) = \frac{2}{(\frac{2(z-1)}{T(z+1)} + 1)(\frac{2(z-1)}{T(z+1)} + 2)}$$

Given T = 0.1 sec we get

$$H(z) = \frac{2}{(\frac{2(z-1)}{0.1(z+1)} + 1)(\frac{2(z-1)}{0.1(z+1)} + 2)}$$

$$H(z) = \frac{2}{(20\frac{(z-1)}{(z+1)} + 1)(20\frac{(z-1)}{(z+1)} + 2)}$$

$$=\frac{2(z+1)^2}{(20z-20+z+1)(20z-20+3z+3)}$$

$$=\frac{2z^2+4z+2}{(21z-19)(23z-17)}$$

$$H(z) = \frac{2z^2 + 4z + 2}{483z^3 - 794z + 323}$$

BUTTERWORTH FILTER

- The magnitude response of the Butterworth filter decreases monotonically as the frequency Ω increases from 0 to ∞ .
- The magnitude response of the Butterworth filter closely approximates the ideal response as the order N increases.
- The poles of the Butterworth filter lie on circle.

Step 1 : Analog filter's edge frequencies For Eilineer Transformation $\Omega_1 = \frac{2}{T} \tan\left(\frac{\omega_1}{2}\right) = 2 \tan\left(\frac{0.2\pi}{2}\right) = 0.6498$ $\Omega_2 = \frac{2}{T} \tan\left(\frac{\omega_2}{2}\right) = 2 \tan\left(\frac{0.6\pi}{2}\right) = 2.7527$

Step 2: Order of the fitter $N \ge \frac{1}{2} = \frac{\log \left[\left(\frac{1}{63^2} - 1 \right) / \left(\frac{1}{63^2} - 1 \right) \right]}{\log \left(\frac{1}{63^2} - 1 \right)}$ $\ge \frac{1}{2} = \frac{\log \left[\left(\frac{1}{63^2} - 1 \right) / \left(\frac{1}{63^2} - 1 \right) \right]}{\log \left(\frac{2 \cdot 1527}{0.6498} \right)}$ $\ge \frac{1}{2} = \frac{\log \left(24 / 0.5625 \right)}{0.6269}$

N ≥ 1.3

N = 2

Steps: 3dB sutoff fraquency

Step 4: Transfer function

N is even $H(s) = \prod_{k=1}^{N/2} \frac{B_{R-N_{c}}^{2}}{S^{2}+b_{R-N_{c}}s+c_{R-N_{c}}^{2}}$

$$H(s) = \frac{B_1 \cdot \Omega_c^2}{s^2 + b_1 \cdot \Omega_c s + c_1 \cdot \Omega_c^2}$$

$$b_{k} = 2 \sin \left[\frac{(2k - 1)\pi}{2N} \right]$$

$$b_1 = 2 \sin \frac{\pi}{4} = 1 \cdot 414$$

$$B_1 = c_1 = 1$$

Design a Butterworth filter using impulse invariant method for the following specifications. Assume T= isec. 0.8 < [H(e)] <1 , 0 ≤ W ≤ 0.2 TT (H(e)2) 1 60.2 , 0.6 TE WE T Sol $\hat{\omega}_{1} = 0.2\pi$ $S_1 = 0.8$ $\omega_2 = 0.6\pi$ S2 = 0.2 Step: 1 Analog Fraquency $\Omega_1 = \frac{\omega_1}{\tau} = \frac{0.2\pi}{1} = 0.2\pi$ $\Omega_2 = \frac{\omega_2}{T} = \frac{0.6\pi}{1} = 0.6\pi$

Step:2 Order of the Alter

$$N \geq \frac{1}{2} = \frac{\log \left[\left(\frac{1}{52} - 1 \right) / \left(\frac{1}{512} - 1 \right) \right]}{\log \left(\frac{1}{52} - 1 \right)}$$

$$\geq \frac{1}{2} = \frac{\log \left[\left(\frac{1}{52} - 1 \right) / \left(\frac{1}{52} - 1 \right) \right]}{\log \left[\left(\frac{1}{52} - 1 \right) / \left(\frac{1}{52} - 1 \right) \right]}$$

$$\geq \frac{1}{2} = \frac{\log \left[24 / 0.5625 \right]}{\log 3}$$

21.7

Step: 3

3dB whoff frequency

$$\Omega_{C} = \frac{\Omega_{1}}{\left(\frac{1}{\xi_{1}^{2}}-1\right)^{\frac{1}{2}N}}$$

$$\frac{0.2\pi}{\left(\frac{1}{0.2^2}-1\right)^{1/4}}$$

$$\left[\Omega_{c} = 0.725\right]$$

Step : A Analog Transfer function N is even $H(S) = \frac{N/2}{TI} = \frac{B_R - nc^2}{S^2 + b_R - nc^2 + c_R - nc^2}$ $= \frac{B_I - nc^2}{S^2 + b_I - nc^2 + c_R - nc^2}$ $b_R = 2 \sin \left[\frac{(2k-I)T}{2N}\right]$ $b_I = 2 \sin \left[\frac{TT}{2N}\right] = 1 - k H_A$ $B_I = C_I = 1$

$$H(S) = \frac{0.7251^2}{S^2 + (1.5114)(0.7251)S + 0.7251^2}$$

= $\frac{0.526}{S^2 + 1.025S + 0.526}$

Step 5: Digital Transfer Function H(S) = -0.526 s2+1.025 S+0.526 2a= 1.025 ≯ a = 0.5125 H(3) = -0.926(St0.5125)2+0.2682 0.526 (\$10.5125) +0.51312 0.526× 0.5131/0.5131 2 (S+0.5125)2+0.51312 1.025 0.5131 -(Sto. 5125)2+0.51312 $\frac{b}{(s+a)^2+b^2} \rightarrow \frac{e^{-aT}(x \ln bT)z^4}{1-2e^{-aT}(\cos bT)z^4+e^{-2aT}z^{-2}}$ H(z) = 1.025 _ e (sin 0.51317) z1 1-2e-05125T (cos 0.5131T) z+ e-2x0.5125Tz-2

CHEBYSHEV FILTER

- The magnitude response of the Chebyshev filter exhibits ripple either in passband or in stopband according to type.
- The poles of the Chebyshev filter lie on an ellipse

Design a digital Chebyshev LPF to satisfy the constraints $0.707 \leq |H(e^{j}w)| \leq 1$, $0 \leq w \leq 0.2\pi$ $|H(e^{j}w)| \leq 0.1$, $0.5\pi \leq w \leq \pi$ Using Billinear transformation and assuming T=1sec. Sol: Given $S_1 = 0.707$, $w_1 = 0.2\pi$

$$\delta_2 = 0.1$$
 $\omega_2 = 0.5 \pi$

Step 1. Analog Frequency

$$\Omega_1 = \frac{2}{7} \tan \frac{\omega_1}{2} = \frac{2}{7} \tan \frac{0.2\pi}{2} = 0.6498$$

$$\Omega_2 = \frac{2}{T} \tan \frac{\omega_2}{2} = \frac{2}{1} \tan \frac{0.5\pi}{2} = 2$$

Step 2 Criter of the Hiller

$$N \ge \frac{\cosh^{-1} \left[\left(\frac{1}{\delta_{2}^{2}} - 1 \right) \right] \left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right]}{\cosh^{-1} \left(\frac{1}{\delta_{2}^{2}} - 1 \right) \left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right]}$$

$$\ge \frac{\cosh^{-1} \left[\left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right] \left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right]}{\cosh^{-1} \left[\left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right]} \frac{\log^{2} 2}{\log^{2} 2}$$

$$\ge \frac{\cosh^{-1} \left[\left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right] \left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right]}{\cosh^{-1} \left[2 \left(0.6498 \right) \right]}$$

$$\ge \frac{\cosh^{-1} \left[(\frac{1}{\delta_{1}^{2}} - 1) \right] \left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right]}{\cosh^{-1} \left[\frac{1}{\delta_{1}^{2}} - 1 \right]}$$

$$\ge \frac{\cosh^{-1} \left[\left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right]}{\cosh^{-1} \left[\frac{1}{\delta_{1}^{2}} - 1 \right]}$$

$$\ge \frac{\cosh^{-1} \left[\left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right]}{\cosh^{-1} \left[\frac{1}{\delta_{1}^{2}} - 1 \right]}$$

$$\ge \frac{\cosh^{-1} \left[\left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right]}{\cosh^{-1} \left[\frac{1}{\delta_{1}^{2}} - 1 \right]}$$

$$\ge \frac{\cosh^{-1} \left[\left(\frac{1}{\delta_{1}^{2}} - 1 \right) \right]}{\cosh^{-1} \left[\frac{1}{\delta_{1}^{2}} - 1 \right]}$$

Step 3. Analog Transfer Function H(s)

N is even

$$H(s) = \prod_{k=1}^{N/2} \frac{B_{k} - nc^{2}}{s^{2} + b_{R} - nc^{5} + c_{K} - nc^{2}} = \frac{B_{1} - nc^{2}}{s^{2} + b_{1} - nc^{2} + c_{1} - nc^{2}}$$

$$Y_{N} = \frac{1}{2} \left\{ \left[\left(\frac{1}{c^{0}} + 1 \right)^{0.5} + \frac{1}{c} \right]^{N} - \left[\left(\frac{1}{c^{0}} + 1 \right)^{0.5} + \frac{1}{c} \right]^{-\frac{1}{N}} \right\}$$

$$E = \left[\frac{1}{S_{1}^{2}} - 1 \right]^{0.5} = \left[\frac{1}{D \cdot T \cup T^{2}} - 1 \right]^{0.5} = 1$$

$$Y_{N} = \frac{1}{2} \left\{ 2 \cdot \frac{1}{4} + \frac{1}{2} - 2 \cdot \frac{1}{4} + \frac{1}{2} \right\} = 0 \cdot \frac{1}{455}$$

$$b_{K} = 2 Y_{N} \sin \left[\frac{(2N-1)\pi}{2N} \right]$$

$$b_{1} = 2 \times 0.455 \sin \left[\frac{\pi}{4} \right] = 0.6435$$

$$c_{K} = Y_{N}^{2} + co^{2} \left[\frac{(2N-1)\pi}{2N} \right]$$

$$c_{1} = 0.455^{2} + co^{2} \left[\frac{\pi}{4} \right] = 0.707$$

To And By

$$H = 0 = 2 \left[\frac{2}{2} + \frac{1}{2} + \frac$$

step 4 Digital Transfer Function

5

$$H(2) = H(S) \int c = \frac{1}{T} \frac{(2-1)}{(2+1)}$$

T=1 Sec

1

$$\frac{0.2985}{2^{2} \left(\frac{2+1}{2+1}\right)^{2} + 0.41822\left(\frac{2+1}{241}\right) + 0.2985}$$

$$= \frac{0.2985(241)^{2}}{4(2-1)^{2} + 0.836(2+1)(2+1) + 0.2985(2+1)^{2}}$$

$$= \frac{0.2985(2+1)^{2}}{4(2^{2}+1-2z) + 0.836(2^{2}-1) + 0.2985(2^{2}+2z+1)}$$

$$= \frac{0.2985(2^{2}+2z+1)}{4z^{2} + 4 - 5z + 0.836z^{2} - 0.936 + 0.2985z^{2} + 0.597z + 0.2985}$$

$$= \frac{0.2985z^{2} + 0.597z + 0.2985}{5.134z^{2} - 7.403z + 3.462}$$

322