UNIT-I DISCRETE FOURIER TRANSFORM

Mr. J.G.SABARISH M.E. Assistant Professor of ECE NPRCET

LINEARITY

If
$$x_1(n) \stackrel{DFT}{\longleftrightarrow} X_1(k)$$
 and $x_2(n) \stackrel{DFT}{\longleftrightarrow} X_2(k)$ then,
 $a_1 x_1(n) + a_2 x_2(n) \stackrel{DFT}{\longleftrightarrow} a_1 X_1(k) + a_2 X_2(k)$

Here a_1 and a_2 are constants

PERIODICITY

x(n+N)=x(n) for all n X(N+k)=X(k) for all k

$$DFT \{x(n)\} = \bigvee_{n=0}^{N-1} x(n) e^{-j_2 \pi n k/N}$$

$$n=0$$

$$DFT \{x(n+N)\} = \bigvee_{n=0}^{N-1} x(n+N) e^{-j_2 \pi (n+N) k/N}$$

$$= \bigvee_{n=0}^{N-1} x(n) e^{-j_2 \pi n k/N} e^{-j_2 \pi N k/N}$$

$$= \bigvee_{n=0}^{N-1} x(n) e^{-j_2 \pi n k/N} e^{-j_2 \pi N k/N}$$

X(K+N) = X(K)

TIME SHIFTING

$$If x(n) \stackrel{DFT}{\longleftrightarrow} X(k) then,$$

$$x(n - n_0) \stackrel{DFT}{\longleftrightarrow} e^{-j2\pi k n_0/N} X(k)$$
Proof:
P

CIRCULAR CONVOLUTION

If
$$x_1(n) \stackrel{DFT}{\longleftrightarrow} X_1(k)$$
 and $x_2(n) \stackrel{DFT}{\longleftrightarrow} X_2(k)$ then,
 $x_1(n)(N) x_2(n) \stackrel{DFT}{\longleftrightarrow} X_1(k) X_2(k)$

Here $x_1(n)(N)x_2(n)$ means circular convolution of $x_1(n)$ and $x_2(n)$. This property states that multiplication of two DFTs is equivalent to circular convolution of their sequences in time domain.

CIRCULAR TIME SHIFT

If $x(n) \stackrel{DFT}{\longleftrightarrow} X(k)$ then,

$$x((n-l))_N \stackrel{DFT}{\longleftrightarrow} X(k)e^{-j2\pi kl/N}$$

Thus shifting the sequence circularly by 'l' samples is equivalent to multiplying its DFT by $e^{-j2 \pi k l/N}$

CIRCULAR FREQUENCY SHIFT $If x(n) \stackrel{DFT}{\longleftrightarrow} X(k) then,$

$$x(n)e^{j2\pi ln/N} \stackrel{DFT}{\longleftrightarrow} X((k-l))_N$$

Thus shifting the frequency components of DFT circularly is equivalent to multiplying the time domain sequence by $e^{j2 \pi ln/N}$

MULTIPLICATION OF TWO SEQUENCES $If x_1(n) \stackrel{DFT}{\longleftrightarrow} X_1(k) \text{ and } x_2(n) \stackrel{DFT}{\longleftrightarrow} X_2(k) \text{ then,}$ $x_1(n)x_2(n) \stackrel{DFT}{\longleftrightarrow} \frac{1}{N} X_1(k)(N)X_2(k)$

This means multiplication of two sequences in time domain results in circular convolution of their DFTs in frequency domain.

PARSEVAL'S THEOREM

Consider the complex valued sequences x(n) and y(n) then

If $x(n) \stackrel{DFT}{\longleftrightarrow} X(k)$ and $y(n) \stackrel{DFT}{\longleftrightarrow} Y(k)$ then

$$\sum_{n=0}^{N-1} x(n) y^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) Y^*(k)$$

DFT PROBLEM

Find DFT of x(n) = {1,1,2,2,3,3,} and find the Frequency spectrum

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j_{2}\pi kn/N} , \quad k = 0, 1 \dots N-1$$

$$X(0) = \sum_{n=0}^{\infty} x(n) e^{0} = 1 + 1 + 2 + 2 + 3 + 3 = 12$$

$$X(1) = \sum_{n=0}^{\infty} x(n) e^{-j_{2}\pi m} [6] = \sum_{n=0}^{\infty} x(n) e^{-j_{2}\pi m} [3]$$

$$= x(0) e^{0} + x(0) e^{-j\pi/3} + x(0) e^{-j_{2}\pi/3} + x(0) e^{-j_{3}\pi m} +$$

$$\begin{aligned} X(2) &= \sum_{n=0}^{\infty} x(n) e^{-j 2\pi n(2) n/6} &= \sum_{n=0}^{\infty} x(n) e^{-j 2\pi n/3} \\ &= 1 + e^{-j 2\pi n/3} + e^{-j 4\pi n/3} + e^{-j 8\pi n/3} + e^{-j 10\pi n/3} \\ &= 1 - 0.5 - j 0.866 + 2 [-0.5 + j 0.866] + 2(1) + 3 [-0.5 - j 0.866] \\ &+ 3 [-0.5 + j 0.866] \end{aligned}$$

$$\begin{aligned} \hat{x}(s) &= \sum_{n=0}^{5} x(n) e^{-j2\pi(3)n/6} = \sum_{n=0}^{5} x(n) e^{-j\pi n} \\ &= \sum_{n=0}^{5} x(n) e^{-j\pi n} \\ &= 1 + e^{-j\pi} + 2e^{-j2\pi} + 3e^{-j\pi} + 3e^{-j4\pi} + 3e^{-j5\pi} \end{aligned}$$

X(3)=0

$$X(A) = \sum_{n=0}^{5} x(n) e^{-j2\pi An/b} = \sum_{n=0}^{5} x(n) e^{-j4\pi n/3}$$

= $1 + e^{-jA\pi/3} + 2e^{-je\pi/3} + 2e^{-j12\pi/3} + 3e^{-j16\pi/3} + 3e^{-j20\pi/3}$
= $1 - 0.5 + j0.866 + 2(-0.5 - j0.866) + 2(1) + 3(-0.5 + j0.866)$
+ $3(-0.5 - j0.866)$
+ $3(-0.5 - j0.866)$

$$X(5) = \underbrace{\leq}_{n=0}^{\infty} x(n) e^{-j 2\pi 5 n/6} = \underbrace{\leq}_{n=0}^{5} x(n) e^{-j 5 \pi n/3}$$
$$= 1 + e^{-j 5\pi/3} + 2e^{-j 10\pi/3} + 2e^{-j 15\pi/3} + 3e^{-j 25\pi/3} + 3e^{-j 25\pi/3}$$
$$= 1 + 0.5 + j 0.866 + 2 (-0.5 + j 0.866) + 2(-1) + 3(-0.5 - j 0.866)$$
$$+ 3(0.5 - j 0.866)$$

X(5) =-1.5-j2.598

X(k) = {12, -1.5+j2.598, -1.5+j.866, 0, -1.5-j.866, -1.5-j2.598}

|X(k)| = {12, 2.999, 1.732, 0, 1.732, 2.999}

∠X(k) = {0, -60, -30, 0, 30, 60}

Find IDFT of $X(k) = \{3, 2+j, 1, 2-j\}$ IDFT of X(k) is given by

$$x(n) = \frac{1}{N} \sum_{K=0}^{N-1} X(K) e^{j2\pi nk/N}$$

$$n = 0, 1, \dots N - 1$$

Where N=4 Apply n=0, 1, 2, 3 we will get

$$x(n) = \{2, 0, 0, 1\}$$

Fast Fairier Transform (FFT):
FFT is an algorithm that efficiently computes the
DFT of a requence
$$x(n)$$
 of length N.
DFT of $x(n)$ is given by
 $X(M) = \overset{NH}{=} x(n) e^{-j_2\pi - Kn/N}$, $K = 0, \dots N - 1$
Let W_N be the complex-valued phase factor or
Lowledle factor, which is an N^{th} most of unity expressed by
 $W_N = e^{-j_2\pi - N}$

The DFT and IDFT using Twiddle factor

$$X(K) = \frac{N+1}{2} x(n) W_{N}, \quad K=0, 1...N-1$$

$$N=0$$

$$N=0$$

$$X(N) = \frac{N-1}{N} \sum_{K=0}^{N-1} X(K) W_{N}, \quad n=0, 1...N-1$$

Properties of Twiddle factor

Symmetry:
$$W_{N}^{K+\frac{M}{2}} = -W_{N}^{K}$$

 $W_{N}^{K+\frac{M}{2}} = W_{N}^{K} - W_{N}^{N/2}$
 $= W_{N}^{K} e^{-j\frac{\eta \pi}{N}} + \frac{M_{2}^{N}}{2}$
 $= W_{N}^{K} e^{-j\pi}$
 $W_{N}^{K+\frac{M}{2}} = -W_{N}^{K}$
Periodicity: $W_{N}^{K+N} = W_{N}^{K} - \frac{M_{N}^{N}}{2}$
 $= W_{N}^{K} e^{-j\frac{\eta \pi}{N}} + \frac{M_{N}^{N}}{2}$
 $= W_{N}^{K} - \frac{j\frac{\eta \pi}{N}}{N} + \frac{M_{N}^{N}}{2}$

Radix 2 FFT Algorithm

By adopting divide and conquer approach, a computationally officient algorithm for the DFT can be developed. This approach depends on the decomposition of N-point DFT into successfully smaller size DFTs. N is factoried as N=r, r2 r3... m where ri= m2=r1=r then N=r ~ is called radix of FFT algorithm. Number of stages L= Log N Speed Improvement factor = N2 710g N

Find the DFT of $x(n) = \{1, 2, 3, 4, 5, 6, 7, 8\}$ using DIF-FFT algorithm

X(k) = {36, -4+j9.656, -4+j4, -4+j1.656, -4, -4-j1.656, -4-j4, -4-j9.656}

Find the DFT of $x(n) = \{1,2,3,4,4,3,2,1\}$ using DIF-FFT algorithm

X(k) = {20, -5.828-j2.414, 0, -0.172-j0.414, 0, -0.172+j0.414, 0, -5.828+j2.414}

Find the DFT of $x(n) = \{0, 1, 2, 3, 4, 5, 6, 7\}$ using DIT-FFT algorithm

X(k) = {28, -4+j9.656, -4+j4, -4+j1.656, -4, -4-j1.656, -4-j4, -4-j9.656}

Find the DFT of x(n) = n^2 using DIT-FFT algorithm

X(k) = {256, 48.63+j166.05, -51+j102, -78.63+j46.05, -85, -78.63-j46.05, -51-j102, 48.63-j166.05}