

NPR College of Engineering & Technology

NPR Nagar, Natham, Dindigul - 624401, Tamil Nadu, India. Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai. An ISO 9001:2015 Certified Institution. Phone No: 04544- 246 500, 246501, 246502. Website : www.nprcolleges.org, www.nprcet.org, Email:nprcetprincipal@nprcolleges.org

Welcomes you All

Prepared By Dr.T.Priya, Professor of Mathematics, NPR COLLEGE OF ENGINEERING & TECHNOLOGY, Dindigul.

MA8491 NUMERICAL METHODS

OBJECTIVES:

- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals in real life situations.
- To acquaint the student with understanding of numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.
- To understand the knowledge of various techniques and methods of solving various types of partial differential equations.

UNIT I SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

Solution of algebraic and transcendental equations - Fixed point iteration method – Newton Raphson method - Solution of linear system of equations - Gauss elimination method – Pivoting - Gauss Jordan method – Iterative methods of Gauss Jacobi and Gauss Seidel -Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

UNIT II INTERPOLATION AND APPROXIMATION

Interpolation with unequal intervals - Lagrange's interpolation – Newton's divided difference interpolation – Cubic Splines - Difference operators and relations - Interpolation with equal intervals - Newton's forward and backward difference formulae.

UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION

Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal, Simpson's 1/3 rule – Romberg's Method - Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson's 1/3 rules.

UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

Single step methods - Taylor's series method - Euler's method - Modified Euler's method -Fourth order Runge - Kutta method for solving first order equations - Multi step methods -Milne's and Adams - Bash forth predictor corrector methods for solving first order equations.

UNIT V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

Finite difference methods for solving second order two - point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace's and Poisson's equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

TEXTBOOKS:

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi, 2015.

REFERENCES:

- 1. Brian Bradie, "A Friendly Introduction to Numerical Analysis", Pearson Education, Asia, New Delhi, 2007.
- 2. Gerald. C. F. and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia, 6th Edition, New Delhi, 2006.
- 3. Mathews, J.H. "Numerical Methods for Mathematics, Science and Engineering", 2nd Edition, Prentice Hall, 1992.
- 4. Sankara Rao. K., "Numerical Methods for Scientists and Engineers", Prentice Hall of India Pvt. Ltd, 3rd Edition, New Delhi, 2007.
- 5. Sastry, S.S, "Introductory Methods of Numerical Analysis", PHI Learning Pvt. Ltd, 5th Edition, 2015.

UNIT – 3

NUMERICAL DIFFERENTIATION AND INTEGRATION

Newton's gorward formula for derivatives $y = p(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta y_0 + \frac{u(u-1)(u-2)}{3!} \Delta y_0$ $+ \frac{u(u-1)(u-2)(u-3)}{4!} \Delta^4 y_0 + \cdots$ $y' = \frac{1}{8} \left[\Delta y_0 + \frac{(2u-1)}{2!} \Delta^2 y_0 + \frac{(3u^2 - 6u + 2)}{2!} \Delta^2 y_0 + \frac{(3u^2 - 6u + 2$ (4u³-18u²+22u-6) 2⁴y, + · · · ·] $y'' = \frac{1}{p^2} \left[\Delta^2 y_0 + \frac{(6u-6)}{3!} \Delta^3 y_0 + \frac{(12u^2 - 36u + 22)}{4!} \Delta^4 y_{+} \right]$ $y'' = \frac{1}{\beta^3} \int \Delta^3 y_0 + (24 \mu - 36) \Delta^4 y_0 + \cdots]$ O Find the first three derivatures Fins at x=1.5 & at x=4.0 using Neuton's forward interpolation formula, to The data given below. x 1.5 2 2.5 3 3.5 4 Y 3.375 7 13.625 24 38.875 59 Solo $f(x) = \frac{1}{6} \left[\Delta y_0 + \frac{(2u-1)}{21} \Delta y_0 + \frac{Bu - 6u + 2}{21} \Delta y_0 \right]$ + (4u³-18u²+22u-6) sty +...

 $F''(x) = \frac{1}{R^2} \left[\Delta_{y_0}^2 + (\frac{6u-6}{3!}) \Delta_{y_0}^3 + (\frac{12u^2-36u+22}{4!}) \Delta_{y_0}^4 + \cdots \right]$ $F'''(x) = \frac{1}{R^3} \left[\Delta_{y_0}^3 + (\frac{24u-36}{4!}) \Delta_{y_0}^4 + \cdots \right]$ $u = \frac{\chi - \chi_0}{E} = \frac{\chi - 1.5}{0.5}$ When $\chi = 1.5$ $\int u = 0$ x y by by by by Sy 1.5 3.375 (3.625) 3 6-625 2 7 0.15 0 2.5 13.625 3.75 0.75 10.375 4.5 3 24 H·5 14.875 0.75 3.5 38.875 5.25 4 59

$$\begin{aligned} f'(1,5) &= \frac{1}{0.5} \int 3.625 + (0-1) \cdot \frac{3}{2} + \frac{2}{6} (0.75) \\ &= \frac{1}{0.5} \int 3.625 - 1.5 + 0.25 \\ &= \frac{1}{0.5} \int 3.625 - 1.5 + 0.25 \\ &= \frac{1}{0.5} \int 3.625 - 1.5 + 0.25 \\ &= \frac{1}{0.5} \int 3.625 - 1.5 \\ &= \frac{1}{0.5} \int 3.65 - 1.5$$

 $y' = \frac{1}{0.5} \left[20.125 + \frac{1}{2} \times 5.25 + \frac{2}{5} \times 0.75 \right]$ $= \frac{46}{9''} = \frac{1}{0.5^2} \left[5 \cdot 25 + 6 \times \frac{0.75}{6} \right] = 24$ $y''' = \frac{1}{0.53} \int 0.75 \int = 6$ For the given data, find the first two destivatives at x = 1.1x 1.0 1.1 1.2 1.3 1.4 1.5 1.6 y 7.989 8.403 8.781 9.129 9.451 9.750 10.031 $y' = \frac{1}{R} \int \Delta y_0 + (\frac{2u-1}{2!} \Delta^2 y_0 + (\frac{3u^2 - 6u + 2}{3!}) \Delta^2 y_0$ + (4u3-18u2+22u-6) sty +. $y'' = \frac{1}{R^2} \left[\Delta_y^2 + \frac{(6u-6)}{31} \Delta_y^3 + \frac{(12u^2 - 36u + 22)}{4} \Delta_y^{30} + \frac{(12u^2 - 36u$ $u = \frac{\chi - \chi_0}{h} = \frac{\chi - 1.0}{0.1}$ At $x = 1 \cdot 1$ $u = \frac{1 \cdot 1 - 1 \cdot 0}{0 \cdot 1} = 1$.

	1-	11/0.				1	2
-	y	y I	A Dy	Δÿ	ßy [sty	sty
	1.0	7.989	0-140	15.65	A C	39	
	1.1	8.403	0.9700	-0.0360	0 0060	's'	
-	1.2	8 - 781	03180	-0.03	0.0040	-0'0020	Otos
	1.3	9-129	0.2220	-00260	0.002	-0 00/0	6.00
	1-4	9-451	0.2990	-0.0230	0.0050	0.002	
*	1.5	9.750	0.2810	-0.0180		n r	Db
2	1-6	10.031	104-205	- (Jul) +	1 2	1	0.00.
C eta	y(1.1)= =_	$\frac{1}{0.1} \int 0.4$	414 + (2 + (4-18 14 - 0.0	$\frac{-1}{2}$ (-0.0 $\frac{1}{2}$	0360)+((-0.00) 0010 - 0	3-6+2) 6 2] 3.0002	(o.oob)]
	= u ¹¹ /1-1	3.9480	∫ (-0.634	10) + (6-6)(0 0060.	נו	
	9 07	(0·1) =100 \[-1	+ (12-	36+222) 24 1 + (-	(-0.002 <u>2)</u> (-0.00	0)] 020)]	

=-36 + 0.00016 =-35-9998 - 3.584

find the first derivatives of F(x) at x=2 gor the data f(-1) = -21, f(1) = 15, f(2) = 12 F(3) = 3 . using Newton's divided dyperence formula. Soln 3 2 1 x -21 15 12 14 3 The Newton's divided difference formula is $y = y_0 + (n - x_0) A y_0 + (n - n_0) (x - x_1) A^2 y_0$ +(x-x0)(x-x,)(x-x,) Ay +...

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1945 - 2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	χ	y	49	4 ² y	4 ³ y
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 -1	-21	10	No.	Comunit,
$2 \qquad 12 \qquad -3 \qquad -3 \qquad -3 \qquad \\ -9 \qquad 3 \qquad 3 \qquad $	-	15	18	-7	and the second
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	12	- 3	- 3	amal
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	in the second se	-9	the get	hit O
$\begin{aligned} y &= -2i + (x+i) 18 + (x+i) (x-i) (-7) + \\ (x+i) (x-i) (x-2) (i) \end{aligned}$ $= -2i + 18x + 18 - 7(x^{2}-i) + (x^{2}-i) (x-2)$ $= -2i + 18x + 18 - 7x^{2} + 7 + x^{3} - 2x^{2} - x^{3}$ $y &= x^{3} - 9x^{2} + 17x + 6$	3	3		0.36 -3	
$y = 3\lambda$	y = - 2 = - 2 = - 2 = - 2 y = - 2	1 + (x+1) 21 + 18x + 18x + 18x $3 - 9x^{2} + 18x$	$ \begin{array}{r} 18 + (x+1) \\ (x+1) (x \\ -18 - 7(x^{2} \\ +18 - 7x \\ 7x + 6 \\ 17 \end{array} $	(x-1)(-1) -1)(x-2) -1) + (x ² - 2 + 7 + x	(1) (1)(x-2) $(x-2)^{3} - 2x^{2} - x +$

Numerical Integration Trapemoidal scule $T = \int_{a}^{b} F(x) dx = \frac{h}{2} \int_{a}^{b} (sum q) first and last$ ordinate) + 2 (sum q)semaining ordinates) $h = \frac{b-a}{b}$ Simpsons 1/3 sule I=S F(n) dn = $\frac{f_{1}}{3}$ [(jinst + Last) + 4(Sum q) odd ordinales) + 2 (Sum q) even ordinates)] h= b-a n- [multiples of 2] Simpson's 3/8 gule I= <u>3R</u> [(finst Last) +2 (Sum g nultiples g3) +3 (Sum g non-multiples g3)] h=b-a [nultiples g 3]

Staluate $I = \int_{1+x^2}^{1} \frac{dy}{1+x^2} = by using$ Rombergs method. Hence deduce anapproximate value of T.Soln a=0; b=1 $f(x) = \frac{1}{1+x^2}$ $I h = \frac{b-a}{2} = \frac{1-0}{2} = 0.5$ 2 0 0.5 1 E(x) 1 0.8 0.5 F(N)
$$\begin{split} \overline{L}_{1} &= \frac{h}{2} \left[\left(\frac{y_{0} + y_{2}}{2} \right) + 2\left(\frac{y_{1}}{2} \right) \right] \\ &= \frac{0.5}{2} \left[\left(\frac{1 + 0.5}{2} \right) + 2 \times 0.8 \right] \end{split}$$
I, = 0.7750 $\begin{array}{c} \boxed{\square} \quad \begin{array}{c} h = \frac{b-a}{4} = \frac{1-0}{4} = 0.25 \\ \hline \end{array} \\ \begin{array}{c} \chi & 0 \\ \end{array} \\ \begin{array}{c} 0.25 \\ \end{array} \\ \begin{array}{c} 0.5 \\ \end{array} \\ \begin{array}{c} 0.75 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array}$

$$\begin{split} I_{2} &= \frac{0.25}{2} \int (1+0.5) + 2(0.94/2+0.8 + 0.64) J \\ \overline{J_{2}} &= 0.7828 \\ \hline J_{2} &= 0.7828 \\ \hline R &= \frac{b-a}{8} \frac{1-a}{8} = 0.1255 \\ \hline \frac{x}{p(x)} \frac{0}{10} \frac{0.12}{0.21} \frac{0.25}{0.375} \frac{0.5}{0.5} \\ \hline \frac{0.625}{0.7191} \frac{0.75}{0.644} \frac{0.8767}{0.8} \frac{0}{0.5} \\ \hline \frac{0.625}{0.7191} \frac{0.75}{0.644} \frac{0.8767}{0.5} \frac{0}{0.5} \\ + 0.94/2 + 0.8767 + 0.8 \\ + 0.7191 + 0.64 + 0.5664 \\ \hline J_{3} &= 0.7848 \\ \hline T_{3} &= 0.7848 \\ \hline Romberg \quad Jor \quad I_{1} , I_{2} \\ \hline I_{4} &= I_{2} + \left(\frac{T_{2}-T_{1}}{3}\right) = 0.7854 \\ \end{split}$$

Romberg for
$$\overline{J}_{2}, \overline{T}_{3}$$

 $\overline{J}_{5-} = \overline{J}_{3} + \left(\frac{\overline{J}_{3} - \overline{J}_{3}}{3}\right) = 0.7855$
Romberg for $\overline{J}_{4}, \overline{J}_{5-}$
 $\overline{I} = \overline{J}_{5-} + \left(\frac{\overline{J}_{5-} - \overline{J}_{4}}{3}\right) = 0.7855 - \frac{1}{3}$
 $\overline{I} = \int_{0}^{1} \frac{dn}{1 + n^{-1}}$
 $0.7855 = \int \tan^{-1}n \int_{0}^{1}$
 $= \tan^{-1}(1) - \tan^{-1}(0)$
 $\overline{J}_{4-} = 0.7855^{-1}$
 $\overline{\pi} = 3.1420$
(3) Using Romberg Integration, evaluate
 $\int_{0}^{1} \frac{dn}{1 + n}$
Solo
Here $a = 0, b = 1$

$$= 0 \cdot 694 + \left(\frac{0 \cdot 6941 - 0 \cdot 6970}{8}\right)$$

$$= 0 \cdot 693 + \left(\frac{0 \cdot 6931}{8}\right)$$
Romberg for $I_{A} : I_{5}$

$$I_{5} = 0 \cdot 6931$$

$$T_{5} = 1 \cdot 5 + \left(\frac{1}{3} - \frac{1}{3}\right)$$

$$(rauss Quadrature formula$$
Quadrature
The process q finding a definite
integral prom a tabulated values $q = a$
gundion is known as Quadrature
Braussian two point Quadrature formula
$$Iet \quad I = \int_{a}^{b} f(x) dx$$

$$Take \qquad x = \left(\frac{a+b}{2}\right) + \left(\frac{b-a}{2}\right)t$$

$$dx = \left(\frac{b-a}{2}\right) dt$$

By using this transformation

$$I = \int_{1}^{1} g(t) dt = g(\frac{1}{\sqrt{3}}) + g(\frac{1}{\sqrt{3}})$$
C Evaluate $\int_{1}^{1} e^{-\chi^{2}} \cos \chi d\chi$ by Gauss two
Point Quadrature formula:
Soln

$$I = \int_{1}^{1} e^{-\chi^{2}} \cos \chi d\chi$$

$$I = F(\frac{1}{\sqrt{3}}) + F(\frac{1}{\sqrt{3}})$$

$$= e^{-\frac{1}{\sqrt{3}}} \exp(\frac{1}{\sqrt{3}}) + e^{-\frac{1}{\sqrt{3}}} \exp(\frac{1}{\sqrt{3}})$$

$$= e^{-\frac{1}{\sqrt{3}}} \exp(\frac{1}{\sqrt{3}}) + e^{-\frac{1}{\sqrt{3}}} \exp(\frac{1}{\sqrt{3}})$$

$$= e^{-\frac{1}{\sqrt{3}}} \left[\cos(\frac{1}{\sqrt{3}}) + e^{-\frac{1}{\sqrt{3}}} \exp(\frac{1}{\sqrt{3}}) \right]$$

$$I = 1 \cdot 2008$$
C Apply Gauss two point formula
to evaluate $\int_{1}^{1} \frac{1}{1+\chi^{2}} d\chi$

$$= \frac{\pi}{4} \left[0 \cdot 3a59 + 0 \cdot 9454 \right]$$

$$= 0 \cdot 9985^{-}$$
Graunian Three Point Quadrature formula:

$$T = \int_{a}^{b} f(x) dx$$

$$Take \quad x = \left(\frac{a+b}{2}\right) + \left(\frac{b-a}{3}\right)t$$

$$dx = \left(\frac{b-a}{2}\right) dt$$

$$T = \int_{a}^{b} g(t) dt = \frac{5}{9} \left[g\left(-\sqrt{3}\right) + g\left(\sqrt{3}\right) \right] + \frac{8}{9} g(0)$$

$$Valuate \quad \int_{0}^{t} \frac{dn}{1+x^{2}} \quad using \quad s \text{ point Quadrature}$$

$$formula$$

$$\frac{formula}{50b} \quad T = \int_{0}^{t} \frac{dn}{1+x^{2}} \quad q = 0, \quad b = 1$$

$$Take \quad \chi = \left(\frac{a+b}{2}\right) + \left(\frac{b-a}{2}\right)t$$

 $dx = \left(\frac{b-a}{2}\right) dt$ =) x= - + - t $dx = \frac{1}{2} dt$ $T = \int \frac{\frac{1}{2} dt}{1 + (\frac{1+t}{2})^2} = \frac{1}{2} \int \frac{dt}{1 + (\frac{t+t}{2})^2}$ $\therefore g(t) = \frac{1}{1 + (\frac{1+t}{2})^2}$ $I = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left(-\sqrt{3} \right) + \frac{1}{2} \left(\sqrt{3} \right) \right] + \frac{3}{2} \frac{1}{2} \left(\sqrt{3} \right) \right] + \frac{3}{2} \frac{1}{2} \left(\sqrt{3} \right) \right]$ $=\frac{1}{2}\left[\frac{5}{9}\left(\frac{1}{1+(1+(\sqrt{3}/2))^{2}}+\frac{1}{1+(1+(\sqrt{3}/2))^{2}}\right)^{2}\right]$ + 8 [1+1/2] = 1 5 (0.9875 + 0.5595 + 0.711) = 0.7853.

Integration Double $\frac{Trapempidal}{I} \frac{3\pi ule}{f} = \int_{C} \int_{C} \int_{C} f(x, y) dx dy$ $I = \int_{C} \int_{C} \int_{C} f(x, y) dx dy$ $I = \frac{Rk}{H} \int_{C} Sum q four Corners + I$ $I = \frac{Rk}{H} \int_{C} Sum q four corners + I$ Q (Sum q orientating boundary values)+ 4 (Sum q interier Values)] Simpson's grule $I = \frac{kk}{g} \int Sum g four corners t$ 2 (Sum of odd position values) + 4 (Sum of even position values) Boundary + 4 (Sum q odd position values) + 8 (Sum q even position Values) odd rous +8 (Sum g odd position values) + 16 (Sum g even position values) even rours 0-4-0 I= RK Such & Zown com

Evaluate $\begin{aligned} \int_{x}^{2} \frac{1}{x^{2}+y^{2}} \, dx \, dy, \quad numerically \quad uirs \\
F_{n} = 0 \cdot 2, \quad along \quad x - direction \quad and \quad k = 0 \cdot 25 \\
along \quad y - direction \\
\hline
gold \quad 1 = \int_{x}^{2} \frac{1}{x^{2}+y^{2}} \, dx \, dy \\
T = \int_{y}^{2} \frac{1}{x^{2}+y^{2}} \, dx \, dy
\end{aligned}$ f(x,y) = x2+y2 By Trapenoidal $I = \frac{hk}{4} \int Sum g Four Corners +$ 2(Sum g remaining boundary) + 4(Sum g interions)]

1.6 1.8 2 1.2 108 1.4 x 0.4098 0.3378 0.2809 0.2359 p.2 0.5 0-3902 0-3331 0-2839 0-2426 0.2082 0-1798 1.25 0-30170-2710 0-2375 0-2079 0-1821 0.16 1.5 0.2462 0.222 0.1991 0.1779 0.1587 0.1416 1.75 0.1838 0.1679 0.1524 0.1381 0.125 0.2 2 $I = \frac{(0.2)(0.25)}{4} \int 0.5 + 0.2 + 0.2 + 0.125$ +2 (0.4098+0.3378+0.2809+0.2359 + 0. 1798+ 0.16 + 0.1416 + 0.1381+0.1524+0.1679+0.1838 +0.2462+0.2710+0.3331) +4(0.3331+0.2839+0.2426 +0.2082+0.2710+0.2375 +0.2079+0.1821+0.222) + 0.1991 + 0.1779 + 0.1587)] $\frac{(0\cdot 2)(0\cdot 25)}{4} \left[1\cdot 025 + 6\cdot 6642 + 10\cdot 8964 \right]$ = 0.2323.