
UNIT IV

MULTITHREADING AND

GENERIC PROGRAMMING

Thread:

 A thread is a single sequential (separate)

flow of control within program.

Sometimes, it is called an execution

context or light weight process.

Multithreading

 Multithreading is a conceptual

programming concept where a program
(process) is divided into two or more
subprograms (process), which can be
implemented at the same time in parallel.

 A multithreaded program contains
two or more parts that can run
concurrently. Each part of such a program is
called a thread, and each thread defines a
separate path of execution. ht weight
process.

Multitasking

Executing several tasks simultaneously is

called multi-tasking.

 There are 2 types of multi-tasking

 1. Process-based multitasking

 2. Thread-based multi-tasking

Process-based multi-tasking

 Executing various jobs together

where each job is a separate independent

operation is called process-based multi-

tasking.

Thread-based multi-tasking

 Executing several tasks simultaneously
where each task is a separate independent
part of the same program is called Thread-
based multitasking and each independent
part is called Thread.

 It is best suitable for the
programmaticlevel. The main goal of multi-
tasking is to make or do a better
performance of the system by reducing
response time

Multithreading vs Multitasking

Multithreading Multitasking

Multithreading is to execute

multiple threads in a process

concurrently.

Execution

Multitasking is to run multiple

processes on a computer

concurrently.

In Multithreading, the CPU

switches between multiple

threads in the same process

In Multitasking, the CPU switches

between multiple processes to

complete the execution.

Resource Sharing

In Multithreading, resources are

shared among multiple threads in

a process

In Multitasking, resources are shared

among multiple processes

Complexity

Multithreading is light-weight and

easy to create.

Multitasking is heavy-weight and

harder to create

Life Cycle of Thread

 A thread can be in any of the five

following states

1.Newborn State

2.Runnable State

3.Running State

4. Blocked State

5. Dead State

Life Cycle of Thread

The Main Thread

 When we run any java program, the program

begins to execute its code starting from the
main method.

 The JVM creates a thread to start executing
the code present in main method. This
thread is called as main thread.

 Although the main thread is automatically
created, you can control it by obtaining a
reference to it by calling currentThread()
method.

Two important things to know about main

thread are,

 It is the thread from which other threads

will be produced.

 main thread must be always the last

thread to finish execution.

Output: Name of thread is

Thread[MainThread,5,main]

Creating Threads

 Threading is a facility to allow multiple tasks

to run concurrently within a single process.

 Threads are independent, concurrent

execution through a program, and each

 thread has its own stack.

In Java, There are two ways to create a thread:

1) By extending Thread class.

2) By implementing Runnable interface.

1.Create Thread by Implementing

Runnable

 The easiest way to create a thread is to

create a class that implements the

Runnable interface. To implement

Runnable, a class need only implement a

single method called run()

2. Extending Thread Class

 The second way to create a thread is to

create a new class that extends Thread,

and then to create an instance of that

class.

 The extending class must override the

run() method, which is the entry point

for the new thread.

 It must also call start() to begin

execution of the new thread.

Thread class

 Thread class provide constructors and

methods to create and perform operations

on a thread.

 Thread class extends Object class and

implements Runnable interface

Constructors of Thread class:

 Thread()

 Thread(String name)

 Thread(Runnable r)

 Thread(Runnable r,String name

Thread priority:

 Each thread have a priority. Priorities are represented

by a number between 1 and 10. In most cases, thread
schedular schedules the threads according to their
priority (known as preemptive scheduling). But it is
not guaranteed because it depends on JVM
specification that which scheduling it chooses.

3 constants defined in Thread class:

 public static int MIN_PRIORITY

 public static int NORM_PRIORITY

 public static int MAX_PRIORITY

 Default priority of a thread is 5 (NORM_PRIORITY).
The value of MIN_PRIORITY is 1 and the value of
MAX_PRIORITY is 10.

Commonly used methods of Thread

class

 public void run(): is used to perform action for a thread.

public void start(): starts the execution of the thread.JVM calls the run()
method on the thread.

public void sleep(long miliseconds): Causes the currently executing
thread to sleep (temporarily cease execution) for the specified number of
milliseconds.

public void join(): waits for a thread to die.

public void join(long miliseconds): waits for a thread to die for the
specified miliseconds.

public int getPriority(): returns the priority of the thread.

public int setPriority(int priority): changes the priority of the thread.

public String getName(): returns the name of the thread.

public void setName(String name): changes the name of the thread.

public Thread currentThread(): returns the reference of currently
executing thread.

Runnable interface:

 The Runnable interface should be

implemented by any class whose instances

are intended to be executed by a thread.

Runnable interface have only one method

named run().public void run(): is used

to perform action for a thread.

Starting a thread:

 start() method of Thread class is used

to start a newly created thread. It

performs following tasks:A new thread

starts(with new callstack).

 The thread moves from New state to the

Runnable state.

 When the thread gets a chance to

execute, its target run() method will run.

Synchronization in Java

 Synchronization in java is the capability to

control the access of multiple threads to any
shared resource.

 Java Synchronization is better option where
we want to allow only one thread to access
the shared resource.

Types of Synchronization

There are two types of synchronization

 Process Synchronization

 Thread Synchronization

Why use Synchronization

The synchronization is mainly used to

 o To prevent thread interference.

 o To prevent consistency problem.

Thread Synchronization

 There are two types of thread

synchronization mutual exclusive and

inter-thread communication.

 Mutual Exclusive

◦ Synchronized method.

◦ Synchronized block.

◦ static synchronization.

 Cooperation (Inter-thread

communication in java

Mutual Exclusive

 Mutual Exclusive helps keep threads from

interfering with one another while sharing

data. This can be done by three ways in

java:

 by synchronized method

 by synchronized block

 by static synchronization

Synchronized block.

 Synchronized block can be used to

perform synchronization on any specific
resource of the method.

 Suppose you have 50 lines of code in
your method, but you want to
synchronize only 5 lines, you can use
synchronized block.

 If you put all the codes of the method in
the synchronized block, it will work same
as the synchronized method.

Threads and Synchronization

Multitasking

 • Multitasking means that you can have several

 processes running at same time, even if only

 one processor.

 • Can run a browser, VM, powerpoint, print job,

 etc.

 • All modern operating systems support

 multitasking

 • On a single processor system, multitasking is

 an illusion projected by operating system

Threads

 • Inside each process can have several threads

 • Each thread represents its own flow of logic

 • gets separate runtime stack

 • Modern operating systems support threading

 too; more efficient than separate processes

 • Example of threading in a browser:

 • separate thread downloads each image on a page

 (could be one thread per image)

 • separate thread displays HTML

 • separate thread allows typing or pressing of stop

 button

 • makes browser look more responsive

Threads in C/C++

 • Threads are not part of C or C++

 • Have to write different code for

each operating

 systems

 • Difficult to port

Threads in Java

 • Part of language

 • Same code for every Java VM

 • Simpler than in most other languages

 • Still very difficult:

 • When running multiple threads, there is

 nondeterminism, even on same machine

 • Often hard to see that your code has bugs

 • Requires lots of experience to do good
designs

Threads in the Virtual Machine

 VM has threads in background

 • VM alive as long as a “legitimate thread”
still

 around (illegitimate threads are
“daemons”)

 • GUI programs will start separate thread
to

 handle events once frame is visible

 main thread

 garbage collector

 event thread

 (once container is visible)

Thread Class

 Use Thread class in java.lang

 • Two most important instance methods:

 • start: Creates a new thread of execution in the

 VM; then, invokes run in that thread of execution;

 current thread also continues running

 • run: explains what the thread should do

 • Thread is not abstract, so there are default

 implementations

 • start does what is described above; should be final

 method (but isn’t)

 • run returns immediately

Creating A Do Nothing Thread

 • The following code creates a Thread object,

 then starts a second thread.

 public static void main(String[] args) {

 Thread t = new Thread();

 t.start(); // now two threads, both running

 System.out.println(“main continues”);

 }

 • In code above:

 • First line creates a Thread object, but main is the

 only running thread

 • Second line spawns a new VM thread. Two threads

 are now active.

 • main thread continues at same time as new t

Getting Thread to Do Something
 • Option #1: extend Thread class, override run

 method

 class ThreadExtends extends Thread {

 public void run() {

 for(int i = 0; i < 1000; i++)

 System.out.println("ThreadExtends " + i);

 }

 }

 class ThreadDemo {

 public static void main(String[] args) {

 Thread t1 = new ThreadExtends();

 t1.start();

 for(int i = 0; i < 1000; i++)

 System.out.println("main " + i);

 }

 }

Alternative to Extending Thread

 No multiple inheritance; might not have an

 extends clause available

 • Might not model an IS-A relationship

 • Really just need to explain to Thread what

 run method to use

 • Obvious function object pattern

 • run is encapsulated in standard Runnable
interface

 • implement Runnable; send an instance to
Thread

 constructor

 • preferred solution

Alternative #2: Using Runnable

 class ThreadsRunMethod implements Runnable {

 public void run() {

 for(int i = 0; i < 1000; i++)

 System.out.println("ThreadsRunMethod " + i);

 }

 }

 class ThreadDemo {

 public static void main(String[] args) {

 Thread t2 = new Thread (new ThreadsRunMethod());

 t2.start();

 for(int i = 0; i < 1000; i++)

 System.out.println("main " + i);

 }

 }

Anonymous Implementation
 May see the Runnable implemented as an

 anonymous class in other people’s code

 class ThreadDemo {

 public static void main(String[] args) {

 Thread t3 = new Thread (new Runnable() {

 public void run() {

 for(int i = 0; i < 1000; i++)

 System.out.println("ThreadAnonymous " + i);

 }

 }

);

 t3.start();

 for(int i = 0; i < 1000; i++)

 System.out.println("main " + i);

 }

 }

Common Mistake #1

 You should NEVER call run yourself

 • will not create new VM thread

 • will not get separate stack space

 • will invoke run in the current

thread

 • start don’t run

Thread States

 Thread is not runnable until start is

called

 • Thread can only unblock if cause of

blocking is

 Resolved

Summary

 • Threading is an essential part of Java and any real

 program. Easier in Java than elsewhere

 • tells you how hard it is elsewhere

 • Follow the rules

 • start don’t run

 • don’t rely exclusively on priorities

 • no public data

 • synchronize mutators, maybe accessors

 • leave critical section only after object is restored

 • no sleeping in synchronized block

 • use wait/notifyAll pattern (or await/signalAll)

 • obtain monitors in same order

