UNIT-I Characteristics of Op-Amp

OPERATION AMPLIFIER

An operational amplifier is a direct coupled high gain amplifier consisting of one or more differential amplifiers, followed by a level translator and an output stage.

It is a versatile device that can be used to amplify ac as well as dc input signals & designed for computing mathematical functions such as addition, subtraction ,multiplication, integration & differentiation

Op-amp symbol

Ideal characteristics of OPAMP

- 1. Open loop gain infinite
- 2. Input impedance infinite
- 3. Output impedance low
- 4. Bandwidth infinite
- 5. Zero offset, ie, Vo=0 when V1=V2=0

Inverting Op-Amp

Non-Inverting Amplifier

Voltage follower

 $V_{\scriptscriptstyle OUT} = V_{\scriptscriptstyle I\!N}$

Input offset current

The difference between the bias currents at the input terminals of the op- amp is called as input offset current. The input terminals conduct a small value of dc current to bias the input transistors. Since the input transistors cannot be made identical, there exists a difference in bias currents

Input offset voltage

A small voltage applied to the input terminals to make the output voltage as zero when the two input terminals are grounded is called input offset voltage

Input offset voltage

A small voltage applied to the input terminals to make the output voltage as zero when the two input terminals are grounded is called input offset voltage

Input bias current

Input bias current IB as the average value of the base currents entering into terminal of an op-amp $I_B = I_B^+ + I_B^-_2$

THERMAL DRIFT

Bias current, offset current and offset voltage change with temperature. A circuit carefully nulled at 25°c may not remain so when the temperature rises to 35°c. This is called drift.

Frequency Response

HIGH FREQUENCY MODEL OF OPAMP

Frequency Response

OPEN LOOP GAIN VS FREQUENCY

Need for frequency compensation in practical op-amps

- Frequency compensation is needed when large bandwidth and lower closed loop gain is desired.
- Compensating networks are used to control the phase shift and hence to improve the stability

Frequency compensation methods

- Dominant- pole compensation
- Pole- zero compensation

Slew Rate

- The slew rate is defined as the maximum rate of change of output voltage caused by a step input voltage.
- An ideal slew rate is infinite which means that op-amp's output voltage should change instantaneously in response to input step voltage