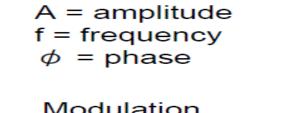


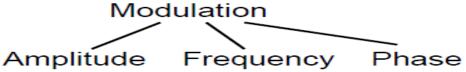
### **UNIT-II Angle Modulation Systems**

PRESENTED BY S.SUDHAKAR B.E.,M.E.,MISTE., ASSISTANT PROFESSOR-ECE NPRCET,DINDIGUL.

## Introduction

- In angle modulation, the timing parameters such as phase or frequency of the carrier are modulated according to amplitude of modulating signal.
- Frequency Modulation and Phase Modulation are also called *angle modulation*.
- Angle modulation can provide better discrimination against *noise and interference* than amplitude modulation.


## Angle modulation


Classified into two types:

- 1. Frequency Modulation
- 2. Phase Modulation

Modulation of an RF Carrier







### **Expression for Angle Modulated Wave**

• An angle modulated wave is expressed mathematically

$$s(t) = A_c \cos\left[2\pi f_c t + \phi(t)\right]$$

### s(t) - Angle modulated wave

- Ac Peak carrier amplitude (volts)
  - $\omega_c$  Carrier radian frequency
  - $\theta(t)$  Instantaneous phase deviation (radians)

## **Angle Modulation**

#### <u>Advantages</u>

- Improving immunity to noise and interference.
- Improved system fidelity and more efficient use of power.

### <u>Disadvantages</u>

- Wider bandwidth.
- Circuit complexity and cost.

### **Applications**

- Commercial radio broadcasting
- Cellular radio & Microwave communication.

## FM & PM Waveforms

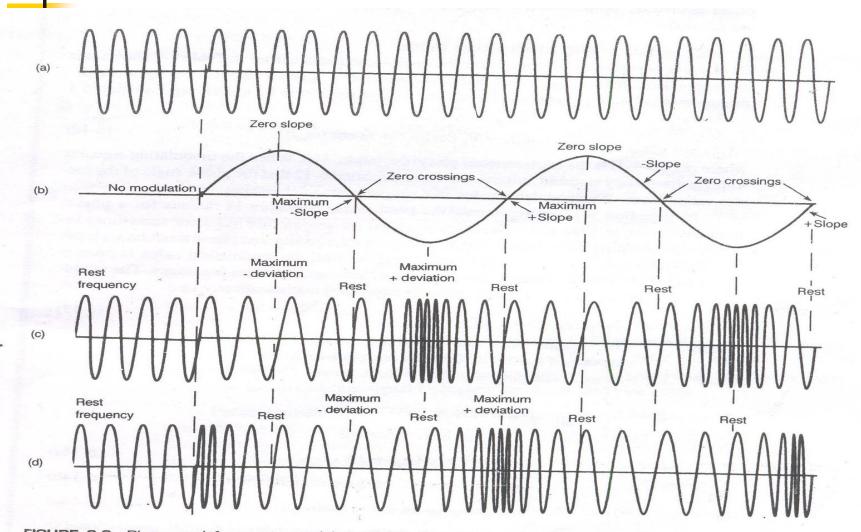



FIGURE 6-3 Phase and frequency modulation of a sine-wave carrier by a sine-wave signal: (a) unmodulated carrier; (b) modulating signal; (c) frequency-modulated wave; (d) phasemodulated wave.

## FM & PM waveforms(Cont...)

In FM, the maximum frequency deviation occurs during the *maximum positive* and *negative peak* of the modulating signal.

In PM, the Maximum Phase deviation occurs during the zero crossing of the modulating signals.

# **Comparison of FM and PM**

| FM                                     | PM                                  |
|----------------------------------------|-------------------------------------|
| Frequency of the carrier is varied     | Phase of the carrier is varied with |
| with respect to the modulating         | respect to the modulating signal.   |
| signal.                                |                                     |
| Modulation index is increased as       | Modulation index remain same if     |
| modulating frequency is reduced.       | modulating frequency is changed.    |
| Its signal to noise performance is not | It produces better signal to noise  |
| good.                                  | performance.                        |
| In FM, Maximum frequency               | In PM, Maximum phase deviation      |
| deviation occurs during the            | occurs during the zero crossing of  |
| maximum +ve and –ve peaks of the       | the modulating signal.              |
| modulating signal.                     |                                     |

# **Angle Modulation**

• *Phase modulation (PM)* is that form of angle modulation in which the instantaneous angle  $\theta i(t)$  is varied linearly with the message signal m(t), then

$$\theta_i(t) = 2\pi f_c t + k_p m(t)$$

• The phase modulated signal is described by

$$s(t) = A_c \cos\left[2\pi f_c t + k_p m(t)\right]$$

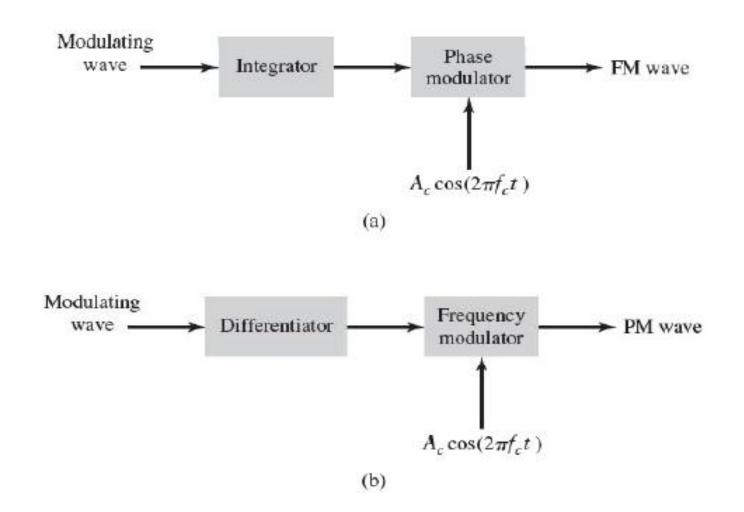
# **Angle Modulation**

#### Frequency Modulation (FM):

In frequency modulation the instantaneous frequency  $f_i(t)$  is varied linearly with message signal, m(t) as:

$$f_i(t) = f_c + k_f m(t)$$

where  $k_f$  is the frequency sensitivity of the modulator in hertz per volt.


The instantaneous angle can now be defined as

$$\theta(t) = 2\pi f_c t + 2\pi k_f \int_0^t m(t) dt$$

and thus the frequency modulated signal is given by

$$s(t) = A_c \cos\left[2\pi f_c t + 2\pi k_f \int_0^t m(t)dt\right]$$

## **Relations between FM and PM**



# Comparison of WBFM and NBFM

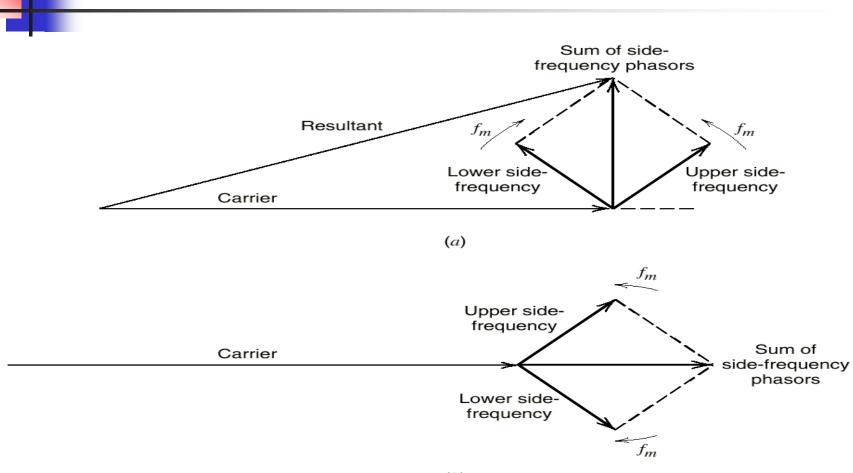
| WBFM                                       | NBFM                            |
|--------------------------------------------|---------------------------------|
| Modulation index is greater than 1         | Modulation index is less than 1 |
| Frequency deviation is 75 KHz              | Frequency deviation is 5 KHz    |
| Modulating frequency range from 30Hz-15KHz | Modulating frequency is 3KHz    |
| Bandwidth 15 times NBFM                    | Bandwidth is 2fm                |
| Noise is more suppressed                   | Less suppressing of noise       |
| Use: Audio Broadcasting                    | Use: Mobile communication       |

## Introduction

The bandwidth of FM signal depends on the *modulation index*.

#### • Two cases of FM:

Narrow band FM, for which β is *small* compared to one radian.
Wideband FM, for which is *large* compared to one radian.


#### Narrow band FM:

- When  $\beta$  is small ,then bandwidth of FM is narrow.
- Narrow band FM also called as *low index FM*.
- Bandwidth of NBFM is same as that of AM.

Narrowband FM

The FM signal,  $s(t) = A_c \cos \left| 2\pi f_c t + \beta \sin \left( 2\pi f_m t \right) \right|$ With  $\cos(A+B) = \cos A \cos B - \sin A \sin B$  $s(t) = A_c \cos(2\pi f_c t) \cos\left[\beta \sin(2\pi f_m t)\right] - A_c \sin(2\pi f_c t) \sin\left[\beta \sin(2\pi f_m t)\right]$ For NBFM: The modulation index,  $\beta \leq 1$  radian.  $\cos\left[\beta\sin\left(2\pi f_{m}t\right)\right] \approx 1$  and  $\sin\left[\beta\sin\left(2\pi f_{m}t\right)\right] \approx \beta\sin\left(2\pi f_{m}t\right)$  $s(t) \approx A_c \cos(2\pi f_c t) - A_c \beta \sin(2\pi f_c t) \sin(2\pi f_m t)$ 

A phasor comparison of narrowband FM and AM waves for sinusoidal modulation. (a) Narrowband FM wave.(b) AM wave.



### **Frequency Modulation**

### <u>Advantages</u>

- Improving immunity to noise and interference.
- Low power is required to transmit the signal.

### <u>Disadvantages</u>

- Very large bandwidth is required.
- Compared to AM the area covered by FM is less.

### Applications

- Radio broadcasting
- Sound broadcasting in TV .

## **Properties of Bessel Functions**

1.  $J_n(\beta)$  are real valued.

- 2.  $J_n(\beta) = J_n(\beta)$  for n is even.
- 3.  $J_n(\beta) = -J_{-n}(\beta)$  for n is odd.

4. 
$$\sum_{n=-\infty}^{\infty} J_n^2(\beta) = 1$$
 Note:  $|J_n(\beta)|$  diminish rapidly for  $n > \beta$ 

### **Transmission Bandwidth of FM signals**

1 Low-index modulation (*narrowband FM*)  $\beta < 1 \ (f_m >>> \Delta f) \quad B = 2f_m \ (Hz)$ 

2 High-index modulation (wideband FM)

 $\beta > 10 (\Delta f >>> f_m)$   $B = 2\Delta f$ 

3 Actual bandwidth

 $B = 2nf_m$ 

where n is the number of significant sidebands

4 Carson's rule (approx 98 % of power)  $B = 2(\Delta f + f_m)$ 

#### Transmission Bandwidth of FM signals

For large  $\beta$ : Bandwidth =  $2nf_m \approx 2\beta f_m = 2 \times \frac{\Delta f}{f_m} \times f_m = 2(\Delta f)$ 

For very small values of  $\beta$ ,  $J_0(\beta)$  and  $J_1(\beta)$  are the significant terms. Therefore the bandwidth for the narrowband case is:

For small  $\beta$ : Bandwidth  $\approx 2 f_m$ 

In order to have a more general rule to take care of the intermediate cases, J.R. Carson proposed the following formula, Carson's Rule:

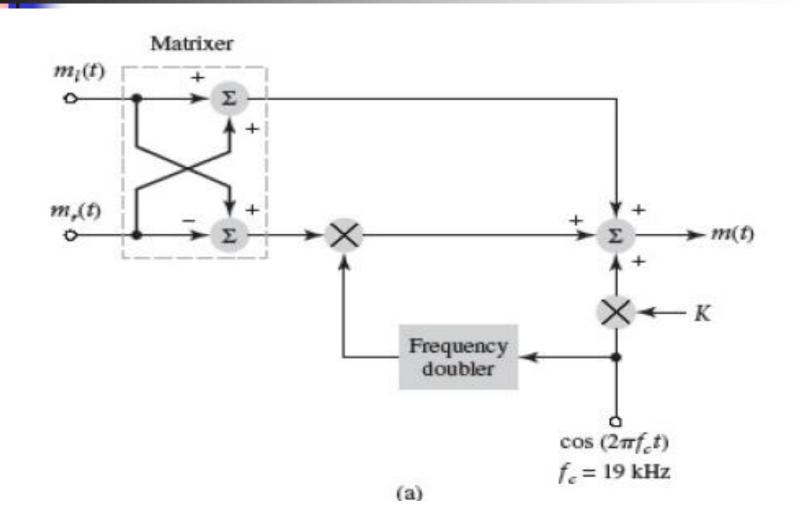
Bandwidth 
$$\approx 2(f_m + \Delta f) = 2f_m\left(1 + \frac{\Delta f}{f_m}\right) = 2f_m(\beta + 1)$$

Carson's rule approaches the correct limits for both very large and very small  $\beta$ .

### **Transmission Bandwidth of FM signals**

• *Deviation Ratio* is a ratio of maximum peak frequency deviation divided by the maximum modulating signal frequency.

$$DR = \frac{\Delta f_{(\max)}}{f_{m(\max)}}$$


- Where
  - $\Delta f_{(max)} = max$ . peak frequency deviation
  - $f_{m(max)} = max$ . modulating signal frequency

### **FM Stereo Multiplexing**

### **Introduction**

- *Stereo multiplexing* is a form of frequency-division multiplexing (FDM) designed to transmit two separate signals via the same carrier.
- FM stereo multiplexing is used for stereo transmission.
- It is used for FM radio broadcasting.
- The specification for FM stereo is influenced by *two factors*:
  - 1. The transmission has to be within the allocated FM channels.
  - 2. It has to be compatible with monophonic radio receivers.

#### **FM Stereo Multiplexing**



#### **FM Stereo Multiplexing** Transmitter operation

- Here  $m_l$  (t) and  $m_r$  (t) are the two signals of left and right messages.
- The sum signal  $m_l(t) + m_r(t)$  and difference signal  $m_l(t) m_r(t)$  are generated.
- The sum signal is directly given to output without any processing. It is used by monophonic receivers.
- The oscillator frequency of 19kHz is amplified by K times and given to output.
- The oscillator frequency is doubled and used by product modulator. The product modulator produces *DSB-SC signal*.
- The multiplexed signal can be defined as:

 $m(t) = [m_l(t) + m_r(t)] + [m_l(t) - m_r(t)] \cos(4\pi f_c t) + K \cos(2\pi f_c t)$ 

#### FM Stereo Multiplexing

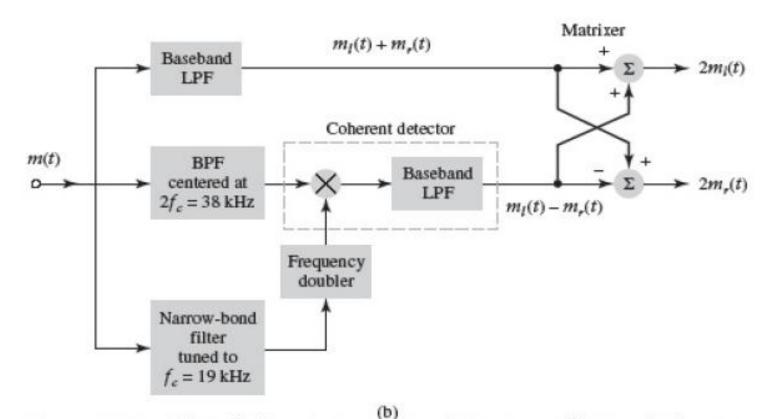
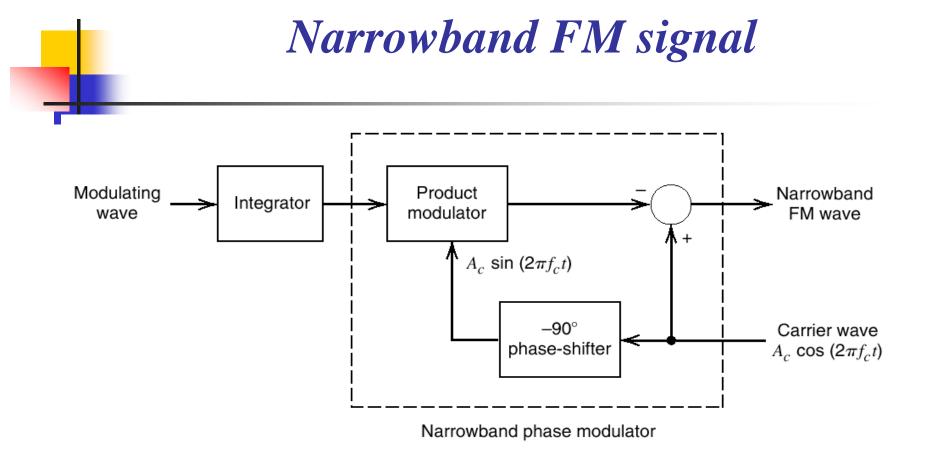




FIGURE 4.16 (a) Multiplexer in transmitter of FM stereo. (b) Demultiplexer in receiver of FM stereo.

### FM Stereo Multiplexing

#### **Receiver Operation**

- The three multiplexed signals are separated by three *appropriate filters*.
- Baseband LPF separates sum signal  $m_l(t) + m_r(t)$
- BPF centered around 2fc separates the DSB-SC signal.
- NB filter tuned to fc separates reference carrier of  $cos(2\pi fct)$ .
- This subcarrier enables the coherent detection of the DSB-SC modulated wave, there by the difference signal  $m_l(t) m_r(t)$  is recovered.
- The sum signal and difference signal is passed to the matrixes which reconstruct the  $m_l$  (t) and  $m_r$  (t) and then applied to their respective speakers.



- This modulator involves splitting the carrier wave into *two paths*. One path is direct, and the other path contains a -90 degree phase-shifter and a product modulator (mixer), the combination of which generates a DSB-SC signal.
- The difference between these two signals produces a *NBFM* signal.

### Generation of FM signals

- *Two basic methods* of generating FM signals:
  - 1. Direct method of FM
  - 2. Indirect method of FM
- *Direct method*: Carrier frequency is directly varied in accordance with the input base-band signal.
- Indirect method: Modulating signal is first used to produce a NBFM signal , and frequency multiplication is next used to increase the frequency deviation to the desired level.

#### Indirect FM(Armstrong Method)

 Basic principle: Narrowband FM signal is generated using phase modulation method. Then the NBFM signal is converted to WBFM.

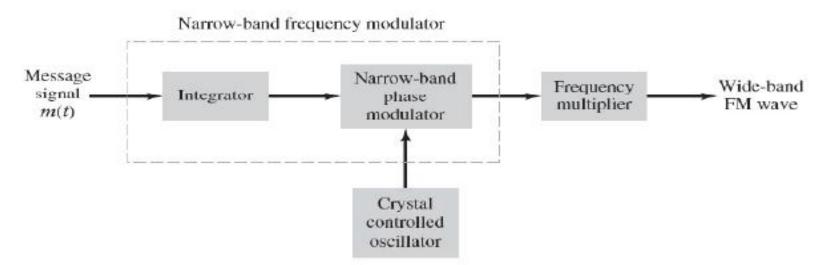



FIGURE 4.10 Block diagram of the indirect method of generating a wide-band FM wave.

#### **Indirect FM**

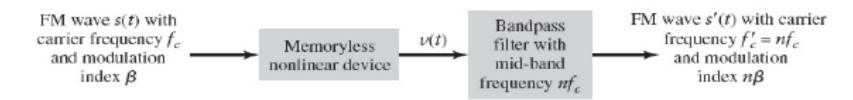



FIGURE 4.11 Block diagram of frequency multiplier.

A frequency multiplier consists of a memoryless nonlinear device followed by a bandpass filter. The inputoutput relation of such a device may be expressed in the general form:

$$v(t) = a_1 s(t) + a_2 s^2(t) + \dots + a_n s^n(t)$$
$$s(t) = A_c \cos\left[2\pi f_c t + \beta \sin\left(2\pi f_m t\right)\right]$$

and

then

$$v(t) = a_1 A_c \cos\left[2\pi f_c t + \beta \sin\left(2\pi f_m t\right)\right]$$
$$+ a_2 A_c^2 \cos^2\left[2\pi f_c t + \beta \sin\left(2\pi f_m t\right)\right]$$
$$+ \cdots$$
$$+ a_n A_c^n \cos^n\left[2\pi f_c t + \beta \sin\left(2\pi f_m t\right)\right]$$



# **THANK YOU**