
CS8501

THEORY OF COMPUTATION

 by,

 C.Kalpana, M.E(CSE)

Assistant Professor,

Department of Computer Science and Engineering,

NPR College of Engineering & Technology

Syllabus

UNIT IV PROPERTIES OF CONTEXT FREE

LANGUAGES

 Normal Forms for CFG – Pumping Lemma for

CFL – Closure Properties of CFL – Turing

Machines – Programming Techniques for TM.

C.KALPANA AP/CSE ,NPRCET

Definition

C.KALPANA AP/CSE ,NPRCET

Simplification of Grammar

C.KALPANA AP/CSE ,NPRCET

Elimination of Useless Symbol

C.KALPANA AP/CSE ,NPRCET

Examples

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

Elimination of Epsilon Productions

C.KALPANA AP/CSE ,NPRCET

Examples

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

Elimination of Unit Productions

C.KALPANA AP/CSE ,NPRCET

Examples

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

Normal Forms of CFG

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

Example Problems

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

 Greibach Normal Forms

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

Example Problems

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

Closure properties of CFL

• Closure properties consider operations on
CFL that are guaranteed to produce a CFL

• The CFL’s are closed under substitution,
union, concatenation, closure (star), reversal,
homomorphism and inverse homomorphism.

• CFL’s are not closed under intersection (but
the intersection of a CFL and a regular
language is always a CFL), complementation,
and set-difference.

 32

Substitution

• Each symbol in the strings of one language is replaced by
an entire CFL language

• Useful in proving some other closure properties of CFL

• Example: S(0) = {anbn| n 1}, S(1) = {aa, bb} is a
substitution on alphabet  ={0, 1}.

33

Substitution
– Theorem: If a substitution s assigns a CFL to every symbol in the alphabet

of a CFL L, then s(L) is a CFL.

– Proof

• Let G = (V, , P, S) be grammar for L

• Let Ga= (Va, Ta, Pa, Sa) be the grammar for each a   with VVa =

• G= (V, T, P, S) for s(L) where

– V = V  Va

– T = union of Ta for all a  

– P consists of

» All productions in any Pa for a  

» In productions of P, each terminal a is replaced by Sa

– A detailed proof that this construction works is in the reader.
– Intuition: this replacement allows anystring in La to take the place of any occurrence

of a in any string of L.

34

Example (1)
• L = {0n1n| n 1}, generated by the grammar

S0S1|01,

• s(0) = {anbm|m n}, generated by the grammar SaSb|A;
AaA| ab,

• s(1)={ab, abc}, generated by the grammar S  abA, A  c
|

• Rename second and third S’s to S0 and S1 respectively.
Rename second A to B. Resulting grammars are:

 S0S1 | 01

 S0aS0b | A; AaA | ab

 S1abB; Bc | 

35

Example(1) Continution

• In the first grammar replace 0 by S0 and 1 by

S1. The combined grammar:

 G = ({S, S0, S1, A, B}, {a, b}, P, S),

 where P = {S  S0SS1 | S0S1, S0 aS0b | A, A

aA | ab, S1abB, B c | }

36

Application of Substitution
• Closure under union of CFL’s L1 and L2

• Closure under concatenation of CFL’s L1 and L2

• Closure under Kleene’s star (closure * and

positive closure +) of CFL’s L1

• Closure under homomorphism of CFL Li for

every ai 

37

Union
• Use L= {a, b}, s(a) = L1 and s(b)=L2.s(L)= L1L2

• To get grammar for L1  L2 ?

– Add new start symbol S and rules S  S1|S2

– We get grammar G = (V, T, P, S) where

 V = V1  V2  { S }, where S  V1  V2

 P = P1  P2  { S  S1 | S2 }

• Example:

– L1 = { anbn | n  0 } , L2 = { bnan | n  0 }

– G1 : S1  aS1b | , G2 : S2  bS2a | 

– L1  L2 is G = ({S1, S2 , S}, {a, b}, P, S) where P = {P1  P2  {S
 S1 | S2 }}

38

Concatenation

• Let L={ab}, s(a)=L1 and s(b)=L2. Then s(L)=L1L2

• To get grammar for L1L2 ?

– Add new start symbol and rule S  S1S2

– We get G = (V, T, P, S) where

V = V1  V2  { S }, where S  V1  V2

P = P1  P2  { S  S1S2 }

• Example:

– L1 = { anbn | n  0 } with G1: S1  aS1b | 

– L2 = { bnan | n  0 } with G2 : S2  bS2a | 

– L1L2 = { anb{n+m}am | n, m  0 } with G = ({S, S1, S2}, {a, b}, {S 
S1S2, S1  aS1b | , S2  bS2a}, S)

39

Kleene’s star

• Use L={a}* or L={a}+, s(a)=L1. Then
s(L)=L1* (or s(L)=L1

+).
• Example:

– L1 = {anbn | n  0} (L1)*= { a{n1}b{n1} ... a{nk}b{nk} | k  0 and ni 
0 for all i }

– L2 = { a{n2} | n  1 }, (L2)*= a*

• To get grammar for (L1)*

– Add new start symbol S and rules S  SS1 | .

– We get G = (V, T, P, S) where

V = V1  { S }, where S  V1

P = P1  { S  SS1 | }

40

Homomorphism

• Closure under homomorphism of CFL L for
every a

• Suppose L is a CFL over alphabet  and h is a
homomorphism on .

• Let s be a substitution that replaces every a 
, by h(a). ie s(a) = {h(a)}.

• Then h(L) = s(L).

• h(L) ={h(a1)…h(ak) | k  0} where h(ak) is a
homomorphism for every ak  .

41

Reversal

• The CFL’s are closed under reversal

• This means then if L is a CFL, so LR is a CFL

• It is enough to reverse each production of a

CFL for L, i.e., substitute A by AR

• Example:

– L = { anbn | n  0 } with P : S  aSb | 

– LR = {bnan | n  0 } with PR : S  bSa | 

42

Intersection

• The CFL’s are not closed under intersection

• Example:

– L = {0n1n2n|n  1} is not context-free.

– L1 = {0
n1n2i |n  1,i 1 }, L2 = {0i1n2n |n  1,i 1 } are

CFL’s with corresponding grammars for L1: S->AB; A-
>0A1 | 01; B->2B | 2 , and for L2: S ->AB; A->0A | 0; B->1B2 |
12.

– However, L = L1  L2

– Thus intersection of CFL’s is not CFL

43

Intersection with RL

• Theorem: If L is CFL and R is a regular language, then L 

R is a CFL.

44

Stack

PDA

FA

AND

Accept/

Reject

Intersection with RL

• P=(QP, , , P, qP, Z0, FP) be PDA to accept CFL by final
state

• A=(QA, , A, qA, FA) be a DFA for RL

• Construct PDA P = (Q, , , , qo, Z0, F) where

– Q = Qp X QA

– qo= (qp, qA)

– F = (FP X FA)

–  is in the form ((q, p), a, X) = ((r, s), ) such that

1. s = A(p, a)

2. (r, ) is in P(q, a, X)

45

• For each move of PDA P, we make the same
move in PDA P and also we carry along the
state of DFA A in a second component of P.

• P accepts a string w iff both P and A accept w.

• w is in L  R.

• The moves ((qp, qA), w, Z) |-*P ((q, p), , )
are possible iff (qp, w, Z) |-*P (q, , ) moves
and p = *(qA, w) transitions are possible.

46

Set Difference with RL
• For a CFL’s L, and a regular language R.

 L - R is a CFL.

 Proof:

– R is regular and RC is also regular

– L - R = L  RC

– Complement of of Regular Language is regular

– Intersection of a CFL and a regular language is

CFL

47

Complementation

• LC is not necessarily a CFL

• Proof:

– Assume that CFLs were closed under complement.

– If L is a CFL then LC is a CFL

– Since CFLs are closed under union, L1
C L2

C is a CFL

– And by our assumption (L1
C L2

C) C is a CFL

– But (L1
C L2

C) C = L1 L2 which we just showed isn’t

necessarily a CFL.

– Contradiction!

48

Set Difference

• L1 and L2 are CFLs. L1 - L2 is not
necessarily a CFL

 Proof:
– L1 = * - L

– * is regular and is also CFL

– But * - L = LC

– If CFLs were closed under set difference, then
* - L = LC would always be a CFL.

– But CFL’s are not closed under complementation

49

Inverse homomorphism
• To recall: If h is a homomorphism, and L is

any language, then h-1(L), called an inverse

homomorphism, is the set of all strings w such

that h(w)L

• The CFL’s are closed under inverse

homomorphism.

• Theorem: If L is a CFL and h is a

homomorphism, then h-1(L) is a CFL

50

Inverse homomorphism – proof

51

Stack

PDA

h

Accept/

Reject

Input

a h(a)

Buffer

• After input a is read, h(a) is placed in a

buffer.

• Symbols of h(a) are used one at a time

and fed to PDA being simulated.

• Only when the buffer is empty does the

PDA read another of its input symbol and

apply homomorphism to it.

52

• Suppose h applies to symbols of alphabet Σ and produces
strings in T*.

• Let PDA P = (Q, T, Γ, δ, q0, Z0, F) that accept CFL L by
final state.

• Construct a new PDA P = (Q, Σ, Γ, δ, (q0, ), Z0, F X {})
to simulate language of h-1(L), where

– Q is the set of pairs (q, x) such that

• q is a state in Q

• x is a suffix of some string h(a) for some input string a in
Σ

53

– δ is defined by

• δ((q, ), a, X) = {((q, h(a)),a,X)}

• If δ(q, b, X) = {(p, )} where bT or b =  then δ((q, bx), ,

X) = {((p, x), )}

– The start state of P’ is (q0, )

– The accepting state of P is (q, ), where q is an accepting

state of P.

– (q0,h(w),Z0)|-*P (p,,) iff ((q0,),w,Z0) |-*P ((p, ), , )

– P accepts h(w) if and only if P accepts w, because of the

way the accepting states of P are defined.

– Thus L(P)=h-1(L(P))

54

Pumping Lemma

• Pumping Lemma for CFL states that for any
Context Free Language L, it is possible to find
two substrings that can be ‘pumped’ any
number of times and still be in the same
language.

C.KALPANA AP/CSE ,NPRCET

• Pumping Lemma is used as a proof for
irregularity of a language.

• Thus, if a language is cfl, it always satisfies
pumping lemma.

• If there exists at least one string made from
pumping which is not in L, then L is surely not
regular.

• The opposite of this may not always be true.

• That is, if Pumping Lemma holds, it does not
mean that the language is cfl.

C.KALPANA AP/CSE ,NPRCET

• For any language L, we break its strings into
five parts and pump second and fourth
substring.

• Pumping Lemma, here also, is used as a tool
to prove that a language is not CFL.

• Because, if any one string does not satisfy its
conditions, then the language is not CFL.

C.KALPANA AP/CSE ,NPRCET

• Thus, if L is a CFL, there exists an integer n,
such that for all x ∈ L with |x| ≥ n, there exists
u, v, w, x, y ∈ Σ∗, such that x = uvwxy, and
(1) |vwx| ≤ n
(2) |vx| ≥ 1
(3) for all i ≥ 0: uviwxiy ∈ L

C.KALPANA AP/CSE ,NPRCET

Example Problem
Find out whether the language L = {xnynzn | n ≥ 1} is context free or not.

Solution

Let L is context free. Then, L must satisfy pumping lemma.

At first, choose a number n of the pumping lemma. Then, take z as 0n1n2n.

Break z into uvwxy, where

|vwx| ≤ n and vx ≠ ε.

Hence vwx cannot involve both 0s and 2s, since the last 0 and the first 2 are
at least (n+1) positions apart. There are two cases −

Case 1 − vwx has no 2s. Then vx has only 0s and 1s. Then uwy, which would
have to be in L, has n 2s, but fewer than n 0s or 1s.

Case 2 − vwx has no 0s.

Here contradiction occurs.

Hence, L is not a context-free language.

C.KALPANA AP/CSE ,NPRCET

Applications of Pumping Lemma

• Pumping Lemma is to be applied to show that
certain languages are not regular.

• It should never be used to show a language is
regular.

• If L is regular, it satisfies Pumping Lemma.

• If L does not satisfy Pumping Lemma, it is non-
regular.

C.KALPANA AP/CSE ,NPRCET

Turing Machines

A Turing machine is a mathematical model of
computation that defines an abstract machine, which
manipulates symbols on a strip of tape according to a
table of rules.

C.KALPANA AP/CSE ,NPRCET

Definition of Turing Machines

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

Language of TM

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

Example Problems

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

C.KALPANA AP/CSE ,NPRCET

6
9

Programming Techniques for TM’s

– TM’s may be used as a computer as well, not just
a language recognizer.

– Example Design a TM to compute a

function_ called monus, or proper
subtraction defined by

m n = m  n if m  n;

= 0 if m < n.

_

7
0

Programming Techniques for TM’s

– Example 8.4 (cont’d)

– Assume input integers m and n are put on the input

tape separated by a 1 as 0m10n

– The TM is M = ({q0, q1, …, q6}, {0, 1}, {0, 1, B}, , q0, B).

– No final state is needed.

_

Programming Techniques for TM’s

Example (cont’d)

– M conducts the following computation steps:

1. find its leftmost 0 and replaces it by a blank;

2. move right, and look for a 1;

3. after finding a 1, move right continuously

4. after finding a 0, replace it by a 1;

5.move left until finding a blank, & then move one cell
to the right to get a 0;

6. repeat the above process.
6

_

Programming Techniques for TM’s

• Example

– q00010 1 Bq1010 3 B0q110 4 B01q20 5 B0q311 9

Bq3011 8 q3B011 10 Bq0011 1 BBq111 4 BB1q21 6

BB11q2B 7 BB1q41 12 BBq41B 12 Bq4BBB 13 B0q6BB

halt!

– q00100  Bq1100  B1q200  Bq3110  q3B110 

Bq0110  BBq510  BBBq50  BBBBq5B  BBBBBq6

halt! 8

73

Programming Techniques for TM’s

• Storage in the State

– Technique:

use the finite control of a TM to hold a finite amount
of data, in addition to the state (which represents a
position in a TM “program”).

– Method:

think of the state as [q, A, B, C], for example, when
think of the finite control to hold three data
elements A, B, and C. See the figure in the next page

Programming Techniques for TM’s

X

Y

Z

74

Track 1

Track 2

Track 3

 A TM viewed as having finite control storage and multiple

tracks.

75

Programming Techniques for TM’s

• Multiple Tracks
– We may think the tape of a TM as composed of

several tracks.
– For example, if there are three tracks, we may use

the tape symbol [X, Y, Z] (like that in Figure 8.13).
– Example 8.7 --- see the textbook. The TM

recognizes the non-CFL language
L = {wcw | w is in (0 + 1)+}.

– Why does not the power of the TM increase in
this way?
Answer: just a kind of tape symbol labeling.

76

Programming Techniques for TM’s

• Subroutines

– The concept of subroutine may also be
implemented for a TM.

– For details, see the textbook.

– Example 8.8 --- design a TM to perform
multiplication on the tape in a way of
transformation as follows:

0m10n1  0mn

For details, see the textbook.

77

Extensions to the Basic TM

• Extended TM’s to be studied:

– Multitape Turing machine

– Nondeterministic Turing machine

• The above extensions make no increase of the
original TM’s power, but make TM’s easier to
use:

– Multitape TM --- useful for simulating real computers

– Nondeterministic TM --- making TM programming
easier.

Extensions to the Basic TM

• Multitape TM’s

Tape 1

Tape 2

Tape 3

Figure 8.16. A multitape TM.

78

79

Extensions to the Basic TM

• Multitape TM’s
– Initially,

• the input string is placed on the 1st tape;

• the other tapes hold all blanks;

• the finite control is in its initial state;

• the head of the 1st tape is at the left end of the input;

• the tape heads of all other tapes are at arbitrary positions.

– A move consists of the following steps:
• the finite control enters a new state;

• on each tape, a symbol is written;

• each tape head moves left or right, or stationary.

80

Extensions to the Basic TM

• Nondeterministic TM’s

– A nondeterministic TM (NTM) has multiple choices of
next moves, i.e.,
(q, X) = {(q , Y , D), (q , Y , D), …, (q , Y , D)}.

1 1 1 2 2 2 k k k

– The NTM is not any ‘powerful’ than a deterministic
TM (DTM), as said by the following theorem.

– Theorem 8.11

If MN is NTM, then there is a DTM MD such that L(MN) =

L(MD). (for proof, see the textbook)

81

8.4 Extensions to the Basic TM

• Nondeterministic TM’s

– The equivalent DTM constructed for a NTM in the

last theorem may take exponentially more time

than the DTM.

– It is unknown whether or not this exponential

slowdown is necessary!

– More investigation will be done in Chapter 10.

82

Restricted TM’s

• Restricted TM’s to be studied:
– the tape is infinite only to the right, and the blank

cannot be used as a replacement symbol;
– the tapes are only used as stacks (“stack machines”);
– the stacks are used as counters only (“counter

machines”).

• The above restrictions make no decrease of the
original TM’s power, but are useful for theorem
proving.

• Undecidability of the TM also applies to these
restricted TM’s.

Restricted TM’s

• Multistack Machines

– Multistack machines, which are restricted versions
of TM’s, may be regarded as extensions of
pushdown automata (PDA’s).

– Actually, a PDA with two stacks has the same
computation power as the TM.

25

Restricted TM’s
• Counter Machines

– There are two ways to think of a counter machine.

– Way 1: as a multistack machine with each stack
replaced by a counter regarded to be on a tape of a
TM.

• A counter holds any nonnegative integer.

• The machine can only distinguish zero and
nonzero counters.

• A move conducts the following operations:

– changing the state;

– add or subtract 1 from a counter which cannot
becomes negative. 26

85

Restricted TM’s

• The Power of Counter Machines

– Every language accepted by a one-counter machine

is a CFL.

– Every language accepted by a counter machine (of

any number of counters) is recursive enumerable.

Thank You

C.KALPANA AP/CSE ,NPRCET

