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Closure properties of CFL 

• Closure properties consider operations on 
CFL that are guaranteed to produce a  CFL 

• The CFL’s are closed under substitution, 
union, concatenation, closure (star), reversal, 
homomorphism and inverse homomorphism. 

• CFL’s are not closed under intersection (but 
the intersection of a CFL and a regular 
language is always a CFL), complementation, 
and set-difference. 
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Substitution 
 

• Each symbol in the strings of one language is replaced by 
an entire CFL language 

• Useful in proving some other closure properties of CFL 

• Example: S(0)  = {anbn| n 1}, S(1) = {aa, bb} is a 
substitution on alphabet  ={0, 1}. 
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Substitution 
– Theorem: If a substitution s assigns a CFL to every symbol in the alphabet 

of a CFL L, then s(L) is a CFL. 

– Proof 

• Let G = (V, , P, S) be grammar for L 

• Let Ga= (Va, Ta, Pa, Sa) be the grammar for each    a   with VVa =  

• G= (V, T, P, S) for s(L) where 

– V = V  Va 

– T = union of Ta for all a   

– P consists of 

» All productions in any Pa for a   

» In productions of P, each terminal a is  replaced by Sa 

– A detailed proof that this construction works is in the reader. 
– Intuition: this replacement allows anystring in La to take the place of any occurrence 

of a in any string of L. 
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Example (1) 
• L = {0n1n| n 1}, generated by the grammar               

S0S1|01,  

• s(0) = {anbm|m n}, generated by the grammar SaSb|A; 
AaA| ab,   

• s(1)={ab, abc}, generated by the grammar S  abA, A  c 
| 

• Rename second and third S’s to S0 and S1 respectively. 
Rename second A to B.  Resulting grammars are:  

           S0S1 | 01 

           S0aS0b | A; AaA | ab 

           S1abB; Bc |  
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Example(1) Continution 

• In the first grammar replace 0 by S0 and 1 by 

S1. The combined grammar:  
  

 G = ({S, S0, S1, A, B}, {a, b}, P, S),  
 

 where P = {S  S0SS1 | S0S1, S0 aS0b | A, A 

aA | ab, S1abB, B c | } 
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Application of Substitution 
• Closure under union of CFL’s L1 and L2 

• Closure under concatenation of CFL’s L1 and L2 

• Closure under Kleene’s star (closure * and 

positive closure +) of CFL’s L1 

• Closure under homomorphism of CFL Li for 

every ai  
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Union  
• Use L= {a, b}, s(a) = L1 and s(b)=L2.s(L)= L1L2 

• To get grammar for L1  L2 ? 

– Add new start symbol S and rules S  S1|S2 

– We get grammar G = (V, T, P, S) where 

    V = V1  V2  { S }, where S  V1  V2 

    P = P1  P2  { S  S1 | S2 } 

• Example:  

– L1 = { anbn | n  0 } , L2 = { bnan | n  0 } 

– G1 : S1  aS1b | , G2 : S2  bS2a |  

–  L1  L2 is G = ({S1, S2 , S}, {a, b}, P, S) where P = {P1  P2  {S 
 S1 | S2 }} 
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Concatenation  

• Let L={ab}, s(a)=L1 and s(b)=L2. Then s(L)=L1L2 

• To get grammar for L1L2 ? 

– Add new start symbol and rule S  S1S2 

– We get G = (V, T, P, S) where 

V = V1  V2  { S }, where S  V1  V2 

P = P1  P2  { S  S1S2 } 

• Example:  

– L1 = { anbn | n  0 } with G1: S1  aS1b |   

–  L2 = { bnan | n  0 } with G2 : S2  bS2a |   

– L1L2 =  { anb{n+m}am | n, m  0 } with  G = ({S, S1, S2}, {a, b}, {S  
S1S2, S1  aS1b | , S2  bS2a}, S) 
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Kleene’s star 

• Use L={a}* or L={a}+, s(a)=L1. Then 
s(L)=L1* (or s(L)=L1

+). 
• Example: 

– L1 = {anbn | n  0}  (L1)*= { a{n1}b{n1} ... a{nk}b{nk} | k  0 and ni  
0 for all i } 

– L2 = { a{n2} | n  1 }, (L2)*=  a* 

• To get grammar for (L1)* 

– Add new start symbol S and rules S  SS1 | . 

– We get G = (V, T, P, S) where 

V = V1  { S },  where S  V1 

P = P1  { S  SS1 | } 
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Homomorphism 

• Closure under homomorphism of CFL L for 
every a 

• Suppose L is a CFL over alphabet  and h is a 
homomorphism on .  

• Let s be a substitution that replaces every a  
, by h(a). ie s(a) = {h(a)}.  

• Then h(L) = s(L). 

• h(L) ={h(a1)…h(ak) | k  0}  where h(ak) is a 
homomorphism for every ak  . 
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Reversal 

• The CFL’s are closed under reversal  

• This means then if L is a CFL, so LR is a CFL 

• It is enough to reverse each production of a 

CFL for L, i.e., substitute   A by AR 

• Example: 

– L = { anbn | n  0 } with P : S  aSb |  

– LR = {bnan | n  0 } with PR : S  bSa |  
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Intersection 

• The CFL’s are not closed under intersection 

• Example: 

– L = {0n1n2n|n  1}  is not context-free. 

– L1 =   {0
n1n2i |n   1,i 1 }, L2 = {0i1n2n |n   1,i 1 } are 

CFL’s with corresponding grammars for L1: S->AB; A-
>0A1 | 01; B->2B | 2 , and for L2: S ->AB; A->0A | 0; B->1B2 | 
12. 

– However,  L = L1  L2  

– Thus intersection of CFL’s is not CFL 
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Intersection with RL 

• Theorem: If L is CFL and R is a regular language, then L  

R is a CFL.  
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Intersection with RL 

• P=(QP, , , P, qP, Z0, FP) be PDA to accept CFL by final 
state 

• A=(QA, , A, qA, FA) be a DFA for RL 

• Construct PDA P  = (Q, , , , qo, Z0, F) where  

– Q = Qp X QA  

– qo= (qp, qA) 

– F = (FP X FA) 

–  is in the form ((q, p), a, X) = ((r, s), ) such that 

1. s = A(p, a) 

2. (r, ) is in P(q, a, X) 
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• For each move of PDA P, we make the same 
move in PDA P and also we carry along the 
state of DFA A in a second component of P. 

•  P accepts a string w iff both P and A accept w. 

• w is in L  R. 

• The moves ((qp, qA), w, Z) |-*P ((q, p), , ) 
are possible iff  (qp, w, Z) |-*P (q, , ) moves 
and p = *(qA, w) transitions are possible.  
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Set Difference with RL 
• For a CFL’s L, and a regular language R. 

 L - R is a CFL.  

 Proof: 

– R is regular and RC is also regular 

–  L - R = L  RC  

– Complement of of Regular Language is regular 

– Intersection of a CFL and a regular language is 

CFL 
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Complementation 
 

• LC  is not necessarily a CFL 

• Proof: 

– Assume that CFLs were closed under complement. 

–  If L is a CFL then LC is a CFL 

–  Since CFLs are closed under union, L1
C L2

C is a CFL 

–  And by our assumption (L1
C L2

C) C is a CFL 

–  But (L1
C L2

C) C = L1 L2 which we just showed isn’t 

necessarily a CFL. 

–  Contradiction! 
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Set Difference 

• L1 and L2 are CFLs. L1 - L2 is not 
necessarily a CFL   

 Proof:  
– L1 = * - L  

– * is regular and is also CFL 

– But * - L = LC    

– If CFLs were closed under set difference, then  
* - L = LC   would always be a CFL. 

– But CFL’s are not closed under complementation 
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Inverse homomorphism 
• To recall: If h is a homomorphism, and L is 

any language, then h-1(L), called an inverse 

homomorphism,  is the set of all strings w such 

that h(w)L 

• The CFL’s are closed under inverse 

homomorphism. 

• Theorem: If L is a CFL and h is a 

homomorphism, then h-1(L) is a CFL 
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Inverse homomorphism – proof 
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• After input a is read, h(a) is placed in a 

buffer.  

• Symbols of h(a) are used one at a time 

and fed to PDA being simulated. 

• Only when the buffer is empty does the 

PDA read another of its input symbol and 

apply homomorphism to it. 
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• Suppose h applies to symbols of alphabet Σ and produces 
strings in T*.  

• Let PDA P = (Q, T, Γ, δ, q0, Z0, F) that accept CFL L by 
final state.  

• Construct a new PDA P = (Q, Σ, Γ, δ, (q0, ), Z0, F X {}) 
to simulate language of h-1(L), where  

– Q is the set of pairs (q, x) such that 

• q is a state in Q 

• x is a suffix of some string h(a) for some input string a in 
Σ 
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– δ is defined by 

• δ((q, ), a, X) = {((q, h(a)),a,X)} 

• If δ(q, b, X) = {(p, )} where bT or b =  then  δ((q, bx), , 

X) = {((p, x), )} 

– The start state of P’ is (q0, ) 

–  The accepting state of P is (q, ), where q is an accepting 

state of P. 

– (q0,h(w),Z0)|-*P (p,,) iff ((q0,),w,Z0) |-*P ((p, ), , )  

– P accepts h(w) if and only if P accepts w, because of the 

way the accepting states of P are defined.   

– Thus L(P)=h-1(L(P)) 
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Pumping Lemma 

• Pumping Lemma for CFL states that for any 
Context Free Language L, it is possible to find 
two substrings that can be ‘pumped’ any 
number of times and still be in the same 
language. 
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• Pumping Lemma is used as a proof for 
irregularity of a language.  

• Thus, if a language is cfl, it always satisfies 
pumping lemma.  

• If there exists at least one string made from 
pumping which is not in L, then L is surely not 
regular. 

• The opposite of this may not always be true. 

• That is, if Pumping Lemma holds, it does not 
mean that the language is cfl. 
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• For any language L, we break its strings into 
five parts and pump second and fourth 
substring. 

• Pumping Lemma, here also, is used as a tool 
to prove that a language is not CFL.  

• Because, if any one string does not satisfy its 
conditions, then the language is not CFL. 
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• Thus, if L is a CFL, there exists an integer n, 
such that for all x ∈ L with |x| ≥ n, there exists 
u, v, w, x, y ∈ Σ∗, such that x = uvwxy, and 
(1) |vwx| ≤ n 
(2) |vx| ≥ 1 
(3) for all i ≥ 0: uviwxiy ∈ L 
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Example Problem 
Find out whether the language L = {xnynzn | n ≥ 1} is context free or not. 

Solution 

Let L is context free. Then, L must satisfy pumping lemma. 

At first, choose a number n of the pumping lemma. Then, take z as 0n1n2n. 

Break z into uvwxy, where 

|vwx| ≤ n and vx ≠ ε. 

Hence vwx cannot involve both 0s and 2s, since the last 0 and the first 2 are 
at least (n+1) positions apart. There are two cases − 

Case 1 − vwx has no 2s. Then vx has only 0s and 1s. Then uwy, which would 
have to be in L, has n 2s, but fewer than n 0s or 1s. 

Case 2 − vwx has no 0s. 

Here contradiction occurs. 

Hence, L is not a context-free language. 
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Applications of Pumping Lemma 
 

• Pumping Lemma is to be applied to show that 
certain languages are not regular. 

•  It should never be used to show a language is 
regular. 

• If L is regular, it satisfies Pumping Lemma. 

• If L does not satisfy Pumping Lemma, it is non-
regular. 
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Turing Machines 

A Turing machine is a mathematical model of 
computation that defines an abstract machine, which 
manipulates symbols on a strip of tape according to a 
table of rules.  
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Definition of Turing Machines 
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Language of TM 

 

C.KALPANA AP/CSE ,NPRCET 



 

C.KALPANA AP/CSE ,NPRCET 



Example Problems 
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Programming Techniques for TM’s 

– TM’s may be used as a computer as well, not just  
a language recognizer. 

– Example Design a TM to compute a 

function_ called  monus, or proper 
subtraction defined by 

 

m n = m  n if m  n; 

= 0 if m < n. 

_ 
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Programming Techniques for TM’s 

– Example 8.4 (cont’d) 

– Assume input integers m and n are put on the input  

tape separated by a 1 as 0m10n 

– The TM is M = ({q0, q1, …, q6}, {0, 1}, {0, 1, B}, , q0, B). 

– No final state is needed. 

_ 



Programming Techniques for TM’s 

Example (cont’d) 

– M conducts the following computation steps: 

1. find its leftmost 0 and replaces it by a blank; 

2. move right, and look for a 1; 

3. after finding a 1, move right continuously 

4. after finding a 0, replace it by a 1; 

5.move left until finding a blank, & then move one cell  
to the right to get a 0; 

6. repeat the above process. 
6 

_ 



Programming Techniques for TM’s 

• Example 

– q00010 1 Bq1010 3 B0q110 4 B01q20 5 B0q311 9  

Bq3011 8 q3B011 10 Bq0011 1 BBq111 4 BB1q21 6  

BB11q2B 7  BB1q41 12  BBq41B 12  Bq4BBB 13 B0q6BB 

halt! 

– q00100  Bq1100  B1q200  Bq3110  q3B110  

Bq0110  BBq510  BBBq50  BBBBq5B  BBBBBq6 

halt! 8 
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Programming Techniques for TM’s 

• Storage in the State 

– Technique: 

use the finite control of a TM to hold a finite amount  
of data, in addition to the state (which represents a  
position in a TM “program”). 

– Method: 

think of the state as [q, A, B, C], for example, when  
think of the finite control to hold three data  
elements A, B, and C. See the figure in the next page 



Programming Techniques for TM’s 

X 

Y 

Z 
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Track 1 

Track 2 

Track 3 

 
      A TM viewed as having finite control storage and  multiple 

tracks. 
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Programming Techniques for TM’s 

• Multiple Tracks 
– We may think the tape of a TM as composed of  

several tracks. 
– For example, if there are three tracks, we may use  

the tape symbol [X, Y, Z] (like that in Figure 8.13). 
– Example 8.7 --- see the textbook. The TM  

recognizes the non-CFL language 
L = {wcw | w is in (0 + 1)+}. 

– Why does not the power of the TM increase in  
this way? 
Answer: just a kind of tape symbol labeling. 
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Programming Techniques for TM’s 

• Subroutines 

– The concept of subroutine may also be  
implemented for a TM. 

– For details, see the textbook. 

– Example 8.8 --- design a TM to perform  
multiplication on the tape in a way of  
transformation as follows: 

0m10n1  0mn  

For details, see the textbook. 
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Extensions to the Basic TM 

• Extended TM’s to be studied: 

– Multitape Turing machine 

– Nondeterministic Turing machine 

• The above extensions make no increase of the  
original TM’s power, but make TM’s easier to  
use: 

– Multitape TM --- useful for simulating real computers 

– Nondeterministic TM --- making TM programming  
easier. 



Extensions to the Basic TM 

• Multitape TM’s 

Tape 1 

 

Tape 2 

 

Tape 3 

 

 
Figure 8.16. A multitape TM. 
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Extensions to the Basic TM 

• Multitape TM’s 
– Initially, 

• the input string is placed on the 1st tape; 

• the other tapes hold all blanks; 

• the finite control is in its initial state; 

• the head of the 1st tape is at the left end of the input; 

• the tape heads of all other tapes are at arbitrary positions. 

– A move consists of the following steps: 
• the finite control enters a new state; 

• on each tape, a symbol is written; 

• each tape head moves left or right, or stationary. 
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Extensions to the Basic TM 

• Nondeterministic TM’s 

– A nondeterministic TM (NTM) has multiple choices of  
next moves, i.e., 
(q, X) = {(q , Y , D ), (q , Y , D ), …, (q , Y , D )}. 

1 1 1 2 2 2 k k k 

– The NTM is not any ‘powerful’ than a deterministic  
TM (DTM), as said by the following theorem. 

– Theorem 8.11 

If MN is NTM, then there is a DTM MD such that L(MN) = 

L(MD). (for proof, see the textbook) 
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8.4 Extensions to the Basic TM 

• Nondeterministic TM’s 

– The equivalent DTM constructed for a NTM in the  

last theorem may take exponentially more time  

than the DTM. 

–  It is unknown whether or not this exponential  

slowdown is necessary! 

– More investigation will be done in Chapter 10. 
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Restricted TM’s 

• Restricted TM’s to be studied: 
– the tape is infinite only to the right, and the blank  

cannot be used as a replacement symbol; 
– the tapes are only used as stacks (“stack machines”); 
– the stacks are used as counters only (“counter  

machines”). 

• The above restrictions make no decrease of the  
original TM’s power, but are useful for theorem  
proving. 

• Undecidability of the TM also applies to these  
restricted TM’s. 



Restricted TM’s 

• Multistack Machines 

– Multistack machines, which are restricted versions  
of TM’s, may be regarded as extensions of  
pushdown automata (PDA’s). 

– Actually, a PDA with two stacks has the same  
computation power as the TM. 
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Restricted TM’s 
• Counter Machines 

– There are two ways to think of a counter machine. 

– Way 1: as a multistack machine with each stack  
replaced by a counter regarded to be on a tape of a  
TM. 

• A counter holds any nonnegative integer. 

• The machine can only distinguish zero and  
nonzero counters. 

• A move conducts the following operations: 

– changing the state; 

– add or subtract 1 from a counter which cannot 
becomes negative. 26 
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Restricted TM’s 

• The Power of Counter Machines 

– Every language accepted by a one-counter machine  

is a CFL. 

– Every language accepted by a counter machine (of  

any number of counters) is recursive enumerable. 



 

 

Thank You 
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