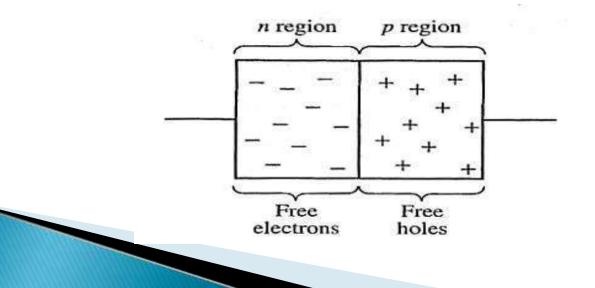
UNIT IV SEMICONDUCTOR DIODE AND APPLICATIONS

Overview

Introduction

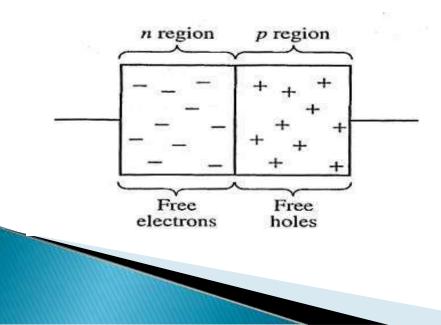
- What are P-type and N-type semiconductors??
- What are Diodes?
- Forward Bias & Reverse Bias
- Characteristics Of Ideal Diode
- Shockley Equation
- I V Characteristics of Diodes

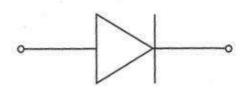
Introduction

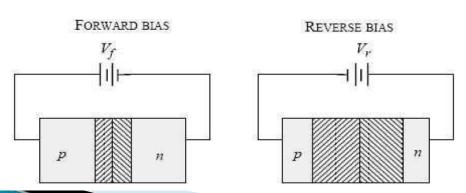

Semiconductors are materials whose electrical properties lie between Conductors and Insulators. Ex : Silicon and Germanium

What are P-type and N-type?

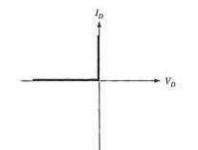
- Semiconductors are classified in to P-type and N-type semiconductor
- P-type: A P-type material is one in which holes are majority carriers i.e. they are positively charged materials (++++)
- N-type: A N-type material is one in which electrons are majority charge carriers i.e. they are negatively charged materials (----)

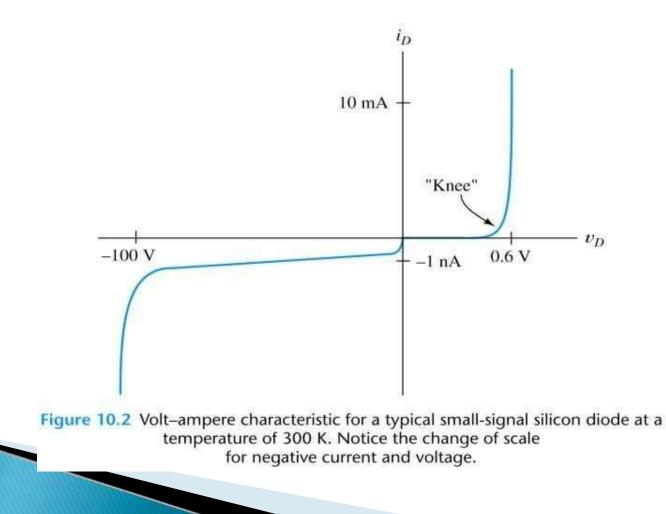

Diodes


Electronic devices created by bringing together a *p*-type and *n*-type region within the same semiconductor lattice. Used for rectifiers, LED etc


It is represented by the following symbol, where the arrow indicates the direction of positive current flow.

Forward Bias and Reverse Bias

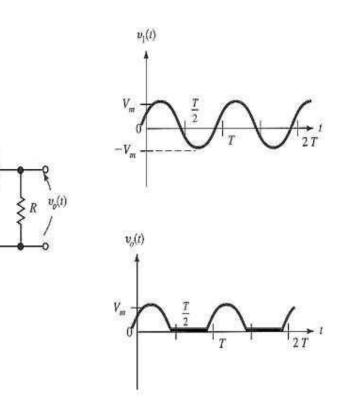

- Forward Bias : Connect positive of the Diode to positive of supply...negative of Diode to negative of supply
- Reverse Bias: Connect positive of the Diode to negative of supply...negative of diode to positive of supply.


Characteristics of Diode

- Diode always conducts in one direction.
- Diodes always conduct current when "Forward Biased" (Zero resistance)
- Diodes do not conduct when Reverse Biased (Infinite resistance)

I-V characteristics of Ideal diode

I-V Characteristics of Practical Diode



Rectification

- Converting ac to dc is accomplished by the process of rectification.
- Two processes are used:
 - Half-wave rectification;
 - Full-wave rectification.

Half-wave Rectification

- Simplest process
 used to convert ac to dc.
- A diode is used to clip the input signal (M) excursions of one polarity to zero.

D1

Shockley Equation $i_{D} = I_{s} \left[\exp\left(\frac{v_{D}}{nV_{T}}\right) - 1 \right] \qquad V_{T} = \frac{kT}{q}$

 $V_T \cong 26 \mathrm{mV}$

Is is the saturation current ~10 ⁻¹⁴ V_d is the diode voltage n – emission coefficient (varies from 1 - 2) $k = 1.38 \times 10^{-23}$ J/K is Boltzmann's constant $q = 1.60 \times 10^{-19}$ C is the electrical charge of an electron.

At a temperature of 300 K, we have