BINARY NUMBER SYSTEM

Introduction

The number system that you are familiar with, that you use every day,
is the decimal number system, also commonly referred to as the base-10
system. When you perform computations suchas 3 +2=5.0r21 - 7= 14,
you are using the decimal number system. This system, which you likely
learned in first or second grade. 15 ingrained mto your subconscious: it's the
natural way that you think about numbers. Evidence exists that Egyptians were
using a decimal number system five thousand years ago. The Roman numeral
system, predominant for hundreds of years, was also a decimal number system
(though organized differently from the Arabic base- 10 number system that we
are most familiar with). Indeed. base-10 systems, in one form or another, have
been the most widely used number systems ever since civilization started
counting.

In dealing with the inner workings of a computer, though, you are going
to have to leamn to think in a different number system. the binary number
system, also referred to as the base-2 system.

Consider a child counting a pile of pennies. He would begin; “One, two,
three, eight, nine.” Upon reaching mine, the next penny counted makes the
total one single group of ten pennies. He then keeps counting: “One group of
ten pennies. ... two groups of ten pennies. .. three groups of ten pennies .. eight
groups of ten pennies .. nine groups of ten penmes...” Upon reaching nine
groups of ten pennies plus nine additional pennies, the next penny counted
makes the total thus far: one single group of one hundred pennies. Upon
completing the task. the child might find that he has three groups of one
hundred penmes. five groups of ten penmes, and two penmes left over: 352

pennies.

More formally. the base-10 system is a positnonal system, where the
rightmost digit is the ones position (the number of ones), the next digit to the
left is the tens position (the number of groups of 10), the next digit to the lefi
15 the hundreds position (the number of groups of 100). and so forth. The base-
10 number system has 10 distinct symbols. or digits (0, 1, 2, 3....8, 9). In
decimal notation, we write a number as a string of symbols. where each
svmbol 15 one of these ten digits, and to nterpret a decimal number. we
multiply each digit by the power of 10 associated with that digit’s position.

For example, consider the decimal number: 6349, This number is:
6349 =5-10'4+3 10744 10'+9 10"
10’ Im] 10’ 10"

position pasition position position
{Le., thousands position) {Le hundreds position) (Le, tens position) (L&, ones posilion)

Consider: Computers are built from transistors, and an individual transistor
can only be ON or OFF (two options). Similarly, data storage devices can be
optical or magnetic. Optical storage devices store data in a specific location by
controlling whether light is reflected off that location or is not reflected off that
location (two options). Likewise, magnetic storage devices store data in a specific
location by magnetizing the particles in that location with a specific orientation.
We can have the north magnetic pole pomnting in one direction, or the opposite
direction (two options).

Computers can most readily use two symbols, and therefore a base-2
system, or binary number system, is most appropriate. The base-10 number
system has 10 distinet symbols: 0, 1,2, 3, 4, 5. 6, 7, 8 and 9. The base-2 system
has exactly two symbaols: 0 and 1. The base-10 symbols are termed digits. The
base-2 symbols are termed binary digits, or bits for short. All base-10 numbers
are built as stnings of digits {such as 6349). All binary numbers are built as strings
of bits (such as 1101). Just as we would say that the decimal number 12890 has
five digits, we would say that the binary number 11001 is a five-bit number.

2 The Binary Number System

Consider again the example of a child counting a pile of pennies, but this
time in binary.

He would begin with the first penny: “1." The next penny counted makes the total
one single group of two pennies. What number 15 this?

When the base-10 child reached nine (the highest symbol in his scheme),
the next penny gave him “one group of ten”. denoted as 10, where the “1"
mdicated one collection of ten.

Similarly, when the base-2 child reaches one (the highest svmbol in his scheme),
the next penny gives him “one group of two”, denoted as 10, where the *1"
mndicates one collection of two.

Back to the base-2 child: The next penny makes one group of two pennies
and one additional penny: “11.” The next penny added makes two groups of two,
which is one group of 4: “100.” The “1™ here indicates a collection of two groups
of two, just as the *1" in the base-10 number 100 indicates ten groups of ten.

Upon completing the counting task, base -2 child might find that he has
one group of four pennies. no groups of two pennies, and one penny left over;
101 pennies. The child counting the same pile of pennies in base-10 would
conclude that there were 5 pennies. So. 5 in base-10 is equivalent to1 01 in base-
2. To avoud confusion when the base in use if not clear from the context, or when
using multiple bases in a single expression. we append a subscript to the number
to indicate the base, and write:

S =101

Just as with decimal notation, we write a binary number as a string of
symbols, but now each symbol is a © or a 1. To interpret a binary number, we
multiply each digit by the power of 2 associated with that digit’s position.

For example, consider the binary number 1101, This number 1s:
1101 =1-2%+1-2%+0-2"+1-2" =13y

T[TT

3 53

1 o

2 2 i 2
posItOn position position position
(e, cights posiiion) (1.e., fours position) (Le., twos position) (1e., Ones position)

Since binary numbers can only contain the two symbols 0 and 1. numbers
sirch as 25 and 1114000 cannot be binary numbers,

We say that all data in a computer 15 stored in binarv—that is, as 1"s and
0"s. It is important to keep in mind that values of 0 and 1 are logical values, not
the values of a physical quantity, such as a voltage. The actual physical binary
values used to store data internally within a computer might be, for instance, 5
volts and 0 volts, or perhaps 3.3 volts and 0.3 volts or perhaps reflection and no
reflection. The two values that are used to physically store data can differ within
different portions of the same computer. All that really matters is that there are
twao different symbols, so we will always refer to them as 0 and 1.

A string of eight bits (such as 11000110} is termed a byte. A collection of
four bits (such as 1011) 15 smaller than a byte. and is hence termed a mibhle, (This
15 the sort of nerd-humor for which engineers are famous. }

The idea of describing numbers using a positional system. as we have illustrated
for base-10 and base-2, can be extended to any base, For example, the base-4
number 231 is:

231 =2 - 4%:3 4414 =2g5,

T

1

4 4 4
positicn position position
{re., sixieens position) iLe., fours position) i Le., ones position)

3 Converting Between Binary Numbers and Decimal
Numbers

We humans about numbers using the decimal number system, whereas computers
use the binary number system. We need to be able to readily shift between the
binary and decimal number representations.

Converting a Binary Number to a Decimal Number

To convert a binary number to a decimal number, we simply write the binary
number as a sum of powers of 2. For example, to convert the binary
number 1011 fo a decimal number, we note that the nghtmost position is the
ones position and the bit value i this position is a 1. So, this rightmost bit has
the decimal value of 1 - 2° . The next position to the left is the twos position, and
the bit value in this position is also a 1. So, this next bit has the decimal value of
1 2. The next position to the left is the fours position, and the bit value in this
position is a 0, The leftmost position is the eights position, and the bit value in
this position 1s a 1. So, this leftmost bit has the decimal value of 1 - 2* . Thus:

o1 =1-27+0-22%1-2"+1 2" =g+241 =11

1 L]
1. The binary number 110110 as a de¢imal number. Solution:
For example. to convert the binary number 10101 to decimal, we annotate
the position values below the bit values:

1 01101
s 8 4 21
Then we add the position values for those positions that have a bit value of

I: l6+4+1=21. Thus
[0101.= 21,

You should “memorize” the binary representations of the decimal digits 0 through
15 shown below,

Decimal Sumber Binary Number Decimal Number Binary Sumber

o DO 8 1000
1 ool 9 1001
2 Q010 10 1010
3 o011 11 1011
4 o100 12 1100
5 ool 13 1101
3 110 14 1110
7 0111 15 1111

You may be wondering about the leading zeros in the table above. For
example, the decimal number 5 is represented in the table as the binary number
(101. We could have represented the binary equivalent of 5 as 101, 00101,
0000000101, or with any other number of leading zeros. All answers are correct.

Sometimes, though, vou will be given the size of a storage location. When you
are given the size of the storage location, include the leading zeros to show all
bits in the storage location. For example, if told to represent decimal 5 as an 8-bit
binary number. your answer should be 00000101,

Converting a Decimal Number to a Binary Number; Method 2

The second method of converting a decimal number to a binary number
entails repeatedly dividing the decimal number by 2, keeping track of the
remainder at each step. To convert the decimal number x to binary:

Step 1. Divide x by 2 to obtain a quotient and remainder. The remainder will
be 0 or 1.

Step 2. If the quotient is zero, vou are fimished: Proceed to Step 3. Otherwise,
go back to Step 1, assigning x to be the value of the most-recent
quotient from Step 1.

Step 3. The sequence of remainders forms the binary representation of the
number.

4 Hexadecimal Numbers

In addition to binary, another number base that is commonly used in digital
systems is base 16. This number system is called hexadecimal, and each digit
position represents a power of 16. For any number base greater than ten, a
problem occurs because there are more than ten symbols needed to represent the
numerals for that number base. It 15 customary in these cases to use the ten
decimal numerals followed by the letters of the alphabet beginning with A to
provide the needed numerals. Since the hexadecimal system is base 16, there arc
sixteen numerals required. The following are the hexadecimal numerals:

0,1,2.3.4567,89ABCDEF
The following are some examples of hexadecimal numbers:
10,. 47, 3FA. AO03F,,

The reason for the common use of hexadecimal numbers is the relationship
between the numbers 2 and 16. Sixteen 1s a power of 2 (16 = 2¢). Because of this
relationship, four digits in a binary number can be represented with a single
hexadecimal digit. This makes conversion between binary and hexadecimal
numbers very easy, and hexadecimal can be used 1o wnte large binary numbers
with much fewer digits. When working with large digital systems, such as
computers, it is common to find binary numbers with 8, 16 and even 32 digts.
Writing a 16 or 32 bit binary number would be quite tedious and error prone. By
using hexadecimal, the numbers can be written with fewer digits and much less
likelthood of error.

To convert a binary number to hexadecimal, divide 1t into groups of four digits
starting with the nightmost digit, If the number of digits 1sn't a multiple of 4,
prefix the number with 0°s so that each group contains 4 digits. For each four
digit group, convert the 4 bit binary number into an equivalent hexadecimal digit.
(See the Binary, BCD, and Hexadecimal Number Tables at the end of this
document for the correspondence between 4 bit binary patterns and hexadecimal
digits)

2. Convert the binary number 10110101 to a hexadecimal number

Divide into groups for 4 digits 1011 0101
Cionvert each group to hex digit B 5
Bfe

3. Convert the binary number OFTOTOT 1000100 o hexadecimal

Divide into groups of 4 digits 0110 1011 1000 1100
Convert each group to hex digit 6 B g C

SBSC,

To convert a hexadecimal number to a binary number., convert each
hexadecimal digit into a group of 4 binary digits.

4. Convert the hex number 374F mto binary
3 T 4 F

Convert the hex digits to binary 0110111 0100 1111
0011011101001 1113

There are several ways in common use to specify that a given number is In
hexadecimal representaton rather than some other radix. In cases where the
context makes it absolutely clear that numbers are represented in hexadecimal,
no indicator is used. In much written matenal where the context doesn’t make it
clear what the radix is, the numeric subscript 16 following the hexadecimal
number is used. In most programming languages, this method isn't really feasible,
s0 there are several conventions used depending on the language. In the C and
C++ lanpuages, hexadecimal constants are represented with a “0x” preceding the
number, as in: 0x317F, or 0x1234, or OxAF. In assembler programming
languages that follow the Intel style, a hexadecimal constant begins with a
numeric character {so that the assembler can distingwish it from a vanable name),
d leading *0" being used if necessary, The letter *h” 1s then suffixed onto the
number to inform the assembler that it 1s a hexadecimal constant. In Intel style
assembler format: 371Fh and

OFABCh are valid hexadecimal constants. Note that: A37h isn't a vahd
hexadecimal constant. It doesn’t begin with a numeric character, and so will be
taken by the assembler as a vanable name. In assembler programming languages
that follow the Motorola style, hexadecimal constants begin with a *$’ character.
S0 1n this case: S371F or $FABC or 501 are valid hexadecimal constants.

5 Binary Coded Decimal Numbers

Another number system that is encountered cecasionally 1s Binary Coded
Decimal. In this system, numbers are represented in a decimal form, however
each decimal digit is encoded using a four bit binary number.

The decimal number 136 would be represented in BCD as follows: 136 = 0001
0011 0110
1 3 6

Conversion of numbers between decimal and BCD 1s quite simple. To
convert from decimal to BCD, simply write down the four bit binary pattem for
each decimal digit. To convert from BCD to decimal, divide the number into
groups of 4 bits and write down the corresponding decimal digit for each 4 bit

group.

There are a couple of vanations on the BCD representation, namely packed
and unpacked. An unpacked BCD number has only a single decimal digit stored
in each data byte. In this case, the decimal digit will be in the low four bits and
the upper 4 bits of the byte will be (. In the packed BCD representation, two
decimal digits are placed in each byvte. Generally, the high order bits of the data
byte contain the more sigmficant decimal digit.

6. The following 1s a 16 bit number encoded in packed BCD format:
OLOTOL10 10010011
This is converted to a decimal number as follows: 0101 0110 1001 0011
569 3 The value 15 5693 dectmal
7. The same number in unpacked BCD (requires 32 bits)
CCHMHFLON 000001 10 00001001 DO00001 1
5 4] 9 3
The use of BCD to represent numbers 1sn’t as common as binary in most
compuier systems, as it is not as space efficient. In packed BCD. only 10 of the
16 possible bit patterns in each 4 bit unit are used. In unpacked BCD. only 10 of
the 256 possible bit patterns in each byte are used. A 16 bit quantity can represent
the range 0-653535 in binary, 0-9999 in packed BCD and only 0-99 in unpacked
BCD.

Fixed Precision and Overflow

we haven't considered the maximum size of the number. We have assumed
that as many bits are available as needed to represent the number. In most
computer systems, this isn't the case. Numbers in computers are typically
represented using a fixed number of bits. These sizes are typically 8 bits, 16 bits,
32 bits, 64 bits and 80 bits. These sizes are generally a multiple of 8, as most
computer memories are orgamzed on an 8 bit byte basis. Numbers in which a
specific number of bits are used to represent the value are called fixed precision
numbers. When a specific number of bits are used to represent a number, that
determines the range of possible values that can be represented. For example,
there are 256 possible combinations of 8 bits, therefore an 8 bit number can
represent 256 distinct numeric values and the range is typically considered to be
(-255. Any number larger than 255 can’t be represented using 8 bits. Similarly,

16 bits allows a range of 0-65535.

When fixed precision numbers are used. (as they are in virtually all computer
calculations) the concept of overflow must be considered. An overflow occurs
when the result of a calculation can’t be represented with the number of bits
available. For example when adding the two eight bit quantities: 150+ 170, the
result is 320. This 1s outside the range 0-255. and so the result can't be represented
using 8 bits. The result has overflowed the available range. When overflow
occurs, the low order bits of the result will remain valid, but the high order bits
will be lost. This results in a value that is significantly smaller than the correct
result.

When doing fixed precision anthmetic (which all computer anthmetic
involves) 1t is necessary to be conscious of the possibility of overflow in the
calculations.

Signed and Unsigned Numbers.

we have only considered positive values for binary numbers. When a fixed
precision binary number 15 used to hold only positive values, it 1s said 1o be
unsigned. In this case. the range of positive values that can be represented is (0 -
2=-1, where n is the number of bits used. It is also possible to represent signed
(negative as well as positive) numbers in binary. In this case, part of the total
range of values 15 used to represent positive values, and the rest of the range 15
used to represent negative values.

There are several ways that signed numbers can be represented in binary,
but the most common representation used today 15 called two's complement. The
term two’s complement is somewhat ambiguous, in that it 1s used in two different

ways. First, as a representation, two's complement i1s a way of mterpreting and
assigning meaning to a bit pattern contained in a fixed precision binary quantity,
Second, the term two's complement is also used to refer to an operation that can
be performed on the bits of a binary quantity. As an operation, the two’s
complement of a number 1s formed by inverting all of the bits and adding 1. Ina
binary number being interpreted using the two's complement representation. the
high order bit of the number indicates the sign. If the sign bit is (), the number 15
positive, and 1f the sign bit is |, the number 15 negative. For positive numbers. the
rest of the bits hold the true magnitude of the number. For negative numbers, the
lower order bits hold the complement (or bitwise inverse) of the magnitude of the
number. It is important to note that two's complement representation can only be
applied to fixed precision quantities, that is. quantities where there are a set
number of bits.

Two's complement representation i1s used because 1t reduces the
complexity of the hardware in the arithmetic-logic unit of a computer’s CPU.
Using a two's complement representation, all of the arithmetic operations can be
performed by the same hardware whether the numbers are considered to be
unsigned or signed. The bit operations performed are identical. the difference
comes from the interpretation of the bits. The interpretation of the value will be
different depending on whether the value 1s considered to be unsigned or signed.

8. Find the 2's complement of the following 8 bit number

00101001

1010110 First, invert the bits
+ 00000001 Then, add 1
= 11001

The 2's complement of 00101001 15 11010111
9. Find the 2's complement of the following 8 bit number 101 10101

1001aLn Invert the his
+ QOO0 then add 1
=01001011

The 2's complement of 10110101 i1s 01001011

The counting sequence for an eight bit binary value using 2's complement
representation appears as follows:

lrgest magnitude positive
orrtinn TFh 127 number

[RRRRRLY TER 126
ool Thh 125

00000011 03k
Gooooo L0 12h

00000001 olh
DOOO0G00 ik
et OFFh -1
1o OFEh -2
ot OrDh -3

10000010 82h -126
10000001 &lh =127
10000000 80k -128largest magnitude negative number

Counting up from (. when 127 1s reached. the next binary pattern in the
sequence corresponds to - I"‘E'i The values jump from the greatest positive number
to the greatest negative number, but that the sequence is as expected after that.
(1e. adding 1 to—128 yields -127, and so on.), When the count has progressed to
(FFh (or the largest unsigned magnitude possible) the count wraps around to 0,
(1.e. adding | to -1 yields 0),

ASCH Character Encoding

The name ASCII is an acronym for: American Standard Code for Information
Interchange. It is a character encoding standard developed several decades ago to
provide a standard way for digital machines to encode characters. The ASCII
code provides a mechanism for encoding alphabetic characters. numeric digats,
and punctuation marks for use in representing text and numbers written using the
Roman alphabet. As onginally designed. it was a seven bit code. The seven bits
allow the representation of 128 unigue characters. All of the alphabet, numeric
digits and standard English punctuation marks are encoded. The ASCII standard
was later extended to an eight bit code (which allows 256 unique code patterns)
and various additional symbols were added. including characters with diacritical
marks (such as accents) used in European languages, which don’t appear in
Enghsh. There are also numerous non-standard extensions to ASCII giving
different encoding for the upper 128 character codes than the standard. For
example, The character set encoded into the display card for the original IBM PC
had a non-standard encoding for the upper character set. This 1s a non-standard
extension that 15 in very wide spread use. and could be considered a standard in
itself.

Some important things to points about ASCIl code:

The numeric digits, 0-9, are encoded in sequence starting at 30h The
upper case alphabetic characters are sequential beginning at 41h The
lower case alphabetic characters are sequential beginning at 61h

The first 32 characters (codes 0-1Fh) and 7Fh are control characters.
They do not have a standard symbaol (glyph) associated with them, They
are used for carnage control, and protocol purposes. They include 0Dh
(CR or carnage return), 0Ah (LF or line feed), OCh (FF or form feed),
08h (BS or backspace).

Most keyboards generate the control characters by holding down a
control key (CTRL) and simultaneously pressing an alphabetic
character kev. The control code will have the same value as the lower
five bits of the alphabetic key pressed. So, for example, the control
character 0Dh is carriage return. It can be generated by pressing CTRL-
M. To get the full 32 control characters a few at the upper end of the
range are generated by pressing CTRL and a pum:rualmn key in
combination. For EXI].IHPIE the ESC (escape) character is generated by
pressing CTRL-[(left square bracket).
Conversions Between Upper and Lower Case ASCII Letters.

ASCII code chart that the uppercase letters start at 4 1h and that the lower
case letters begin at 61h. In each case, the rest of the letters are consecutive and
in alphabetic order. The difference between 41h and 61h 15 20h. Therefore the
conversion between upper and lower case involves either adding or subtracting
20h to the character code. To convert a lower case letter to upper case, subtract
20h, and conversely to convert upper case to lower case. add 20h. It i1s important
to note that vou need to first ensure that you do in fact have an alphabetic
character before performing the addition or subtraction. Ordinarily, a check
should be made that the character is in the range 41h-5Ah for upper case or 61h-
7Ah for lower case.

Conversion Between ASCI and BCD

ASCI code chart that the numeric characters are in the range 30h-39h
Conversion between an ASCII encoded digit and an unpacked BCD digit can be

accomplished by adding or subtracting 30h. Subtract 30h from an ASCII digit to
get BCD, or add 30h to a BCD digit to get ASCII. Again, as with upper and lower
case conversion for alphabetic characters, it is necessary to ensure that the
character 1s in fact a numenc digit before performing the subtraction. The dignt
characters are in the range 30h-35h.

LOGIC GATES

All digital systems are made from a few basic digital circuits that we call
logic gates. These circuits perform the basic logic functions that we will desenibe
in this session. The physical realization of these logic gates has changed over the
years from mechamical relays to electronic vacuum tubes to transistors to
integrated circuits contaning thousands of transistors.

In this appendix you will learn:
Definitions of the basic gates in terms of truth tables and logic equations
DeMorgan's Theorem

How gates defined in terms of positive and negative logic are related To
use multiple-input gates

How to perform a sum of products and a product of sums design from a
truth table specification

1 The Three Basic Logic Gates

Much of a computer’s hardware is comprised of digital logic circuits. Digital
logic circuits are built from just a handful of primitive elements, called logic
gates, combined in various ways.

In a digital logic cirewt, only two values may be present. The values may be
—5 and + 5 volts. Or the values may be 0.5 and 3.5 volts, Or the values may be...
you get the picture. To allow consideration of all of these possibilities, we will
say that digital logic circuits allow the presence of two logical values: 0 and |.

So. signals in a digital logie eircuit take on the values of 0 or 1. Logic gates
are devices which compute functions of these binary signals.
The AND Gate

Consider the circuit below which consists of a batterv. a licht, and two switches
IN series:

When will the light turn on? It should be clear that the light will turn on only
if both switch S1 and switch S2 are shut,

It is quite likely that vou encounter the and operation in some shape or form
hundreds of times each day. Consider the simple action of withdrawing funds
from your checking account at an ATM. You will only be able to complete the
transaction 1f vou have a checking account and you have money in it. The ATM
will only permit the transaction if vou have your ATM card and you enter your
correct 4-digait PIN. To enter the correct PIN, you have to enter the first digit
correctly and enter the second digit correctly and enter the third digit correctly
and enter the fourth digit correctly.

Returning to the circuit above, we can represent the light's operation using a table:

s1 | 52 || Light
open | open off
open | closed off
closed | open off
closed | closed on

The switch 1s a binary device: it can be open or closed. Let's represent these two
states as 0 and 1. Likewise, the light is a binary device with two states: off and
on, which we will represent as 0 and 1. Rewnting the table above with this
notation, we have:

This table, which displays the output for all possible combinations of the input,
is termed the truth table for the AND operation. In a computer, this and
functionality 1s implemented with a circurt called an AND gate. The simplest

AND gate has two mputs and one output and s represented pictortally by the

symbaol:
a
c
b D

where the mputs have been labeled @ and b, and the output has been
labeled c. If both inputs are 1 then the output 15 1. Otherwise, the output 15 0.

We represent the and operation by using either the multplication symbol
(Le.. * - *) or by writing the inputs together. Thus, for the AND gate shown above,
we would write the output ¢ as ¢ =a b or as ¢ = ab. This would be pronounced:
“e=gand "

The truth table for the AND gate 15 shown below, The output c = ab is equal
to | if and only if (1ff) a 1s | and b 1s 1. Otherwise, the output 15 0.

i) h c
1] 0 0
0 1 0
1 0 0
1 | 1

AND gates can have more than one mput (however, an AND gate always has just
a single output). Let’s consider a three-input AND gate:

(=R =~

=

= e DD = == DD
e T R =

The OR Gate
Now consider the circuit shown below, that has 2 switches in parallel.

' _ 5n&1¢§151 .

It is evident that the light will tum on when either switch S, is shut
or switch 8. is shut or both are shut.

It is quite likely that you encounter the or operation in some shape or form
hundreds of times each day. Consider the simple action of sitting on your couch
at home at two in the morning studying for your Digital Logic class. Your phone
will ning if you get a call from Alice or from Bob. Your home's security alarm
will go off if the front door opens or the back door opens. You will drink a cup
of coffee if you are drowsy er you are thirsty.

We can represent the light's operation using a table

§1__ | S2 || Light

open | open off
open | closed an
closed | open on
closed | closed on

Changing the words open and off to 0 and the words s/t and on to | and the table
becomes:

This is the truth table for the OR operation. This er functionality is implemented
with a circuit called an OR pate. The simplest OR gate has two inputs and one
output and is represented pictorially by the symbol:

-] .
=P
=D

If either or both inputs are 1, the output is 1. Otherwise, the output is 0.

We represent the or operation by using the addition symbol. Thus, for the
OR gate above, we would write the output ¢ as ¢ = a + b. This would be
pronounced: “c = a or b.”

The truth table for the OR gate is shown below. The output 15 1 if o 1s
1 or b 15 1; otherwise, the output is 0.

c

[l
|
I

| h

= = DD
_— e

The NOT Gate

The last of our basic logic gates i1s the NOT gate, The NOT gate always has
one input and one output. If the input is 1, the output is 0. If the input is 0, the
output 1s . This operation— chaging the value of the binary mput—is called
complementation, negation or inversion. The mathematical symbol for negation
is an apostrophe. 1f the input to a NOT gate 15 P. the output, termed the
complement, is denoted as P+,

The pictorial symbol for a NOT gate 15 intended to depict an amplifier
followed by a bubble, shown below. Sometimes the NOT operation is represented
by just the bubble, without the amplifier.

The truth table for the NOT gate 15 shown below:

Three New Gates

Three new gates, NAND. NOR, and Exclusive-OR. can be formed from our three
basic gates: NOT, AND, and OR.

NAND Gate

The logic symbol for a NAND gate is like an AND gate with a small circle (or
bubble) on the output.we see that the output of a NAND gate 15 0 (low) only if
both inputs are | (high) . The NAND gate is equivalent to an AND gate followed
by an inverter (NOT-AND).

NAND %‘7
15 1
¥ — 1 0

1 1

2= ~(X&Y)

R

MNOT-AND

D

W=XaY
Z= W= ~(X&Y)

NOR Gate

The logic symhol for a NOR gate 15 like an OR gate with a small circle (or bubble)
on the output. From the truth table ,we see that the output of a NOR gate 15 |
(high) only 1f both inputs are 0 (low), The NOR gate is equivalent to an OR gate
followed by an inverter (NOT-OR), as shown by the two truth tables.

O i

MOR
oo’ 3
xJ > 01 0
y 10 ¢
Z=~{X|¥) 1 1 0
NGT-0R x % lwl 2
% b ojol 1
¥ o0 t]4]10
1 0|7]| 0
W=X1Y 11110
=W =X |¥)
Exclusive-OR Gate.

The XOR gate logic symbol is like an OR. gate symbol with an extra curved
vertical ling on the mput. From the truth table .we see that the output Z of an XOR
gate 15 1 (true or hagh) if either mput, X or Y, 1s 1 (true or high), but not both. The
output Z will be zero if both X and Y are the same (either both | or both 0).

The equation for the XOR gate 1s given as Z = X * Y. In this book we will use
the symbol * as the XOR operator. Sometimes the svmbol or the dollar sign § 1s
used to denote Exclusive-OR. We will use the symbol * because that is the symbal
recognized by the Venlog software used to program a CPLD.

¥
]

_“(x v | x-vlxav xa-y
XA Y i 1 1| 0 0
_D:):'_LD_Z o 1 4] 3 o

1 0 1] o 1
1 K&~ 1 ool o o X
<K Yy

Z=(-KEY)|[X&-Y)

- O O
= =1 L]

T —

BOOLEAN ALGEBRA

Boolean algebra 1s an algebraic structure defined by a set of elements. B, together

with two binary operators, + and., provider that the following postulates are
satistied.

T1: Commutative Law
(a)A+B=B+A
ib) AB=BA

T2: Associative Law
(a) (A+B) +HC=A+ (B+(C)

(b} (AB)C=A(BC)

T3: Distributive Law
(a) A(B+C)=AB+AC
(b)A +(B C)= (A +B) (A+(C)

T4: ldentity Law
a) AtA=A
(b)A A=A

T5: Negative Law
(a) (A")=A"
(b)(A™)=A

T6: Redundant Law
(a) ATAB=A
(b)A (A+B)=A
T7: Null Law
a0+ A=A
(bl A=A

(c)l+A=]
(d)DA=0
T8: Double Negation Law
(2) A tA=]
(b)A" A=0
T9: Absorption Law
{a) A+A'B=A+B
{b)A (A’ + B} =AB

T10: De Morgan's Theorem
(a) (A+BY =A' B

(b){AB) = A+B"
Example 1:
Using theorems,
A+A'B=AI+A'B
=A(l+B)+A'B
=A+AB+AB
=A+B(ATA"

=A+H

Using Truth Table

Using Truth Table
A B A+B A'B A+ACH
0] 0 0 0
0 1 1 1 1

I] |] 1
l l 1 i 1

1 Verification Of De Morgan's Theorems:

* De Morgan's First Theorem states:

The complement of a product of vanables 1s equal to the sum of the
complements of the individual vaniables

* De Morgan's Second Theorem states:

The complement of sum of vanables is equal to the product of the
complements of the dividable variables

+ FIRSTLAW

AB-Rh +B
V. e —

A —_—
— S AB B:{__,,,}D_ A+B

A

Figure: De Morgan’s First Law
« SECONDLAW
A+B=AB

A R A =d =
B A+B B =O AB

Figure: De Morgan's Second Law

ADDER
1 Half Adder

Half adder 1s a circuit that will add two bits & produce a sum & a carry bit. I
needs two input bits & two output bits.Fig.4.1 shows the block diagram of a half
adder.

"t |
HALF ADDER

B - * CARRY

sUM

Figure: Biock diagram of a Half Adder

Ex-OR gate will only produce an output " 1" when "EITHER" mput is at logic
"1", so we need an additional output to produce a carry output, "1" when "BOTH"
inputs "A" and "B" are at logic "1" and a standard AND Gate fits the bill nicely.
By combining the Ex-OR gate with the AND gate results in a simple digital binary
adder circuit known commonly as the "Half Adder” circun.

INPUTS OUTPUTS
A A B SUM | CARRY
=1 Sum
B 0 0 i 0
0 1 1 0
&) Carry 1 0 | 0
1 I 0 1
Figure: Logic diagram & Truth table for half adder
2 Full Adder

A half adder has only two inputs &there is no provision to add a carry coming
from the lower order bits when multi addition i1s performed. For this purpose. a
full adder 15 designed.

A sUM

R —
E FULLADDER
P o CARRY

Figure: Block diagram of a Half Adder
The 1-bit Full Adder circuit 1s basically two half adders connected together and
consists of three Ex-OR gates, two AND gates and an OR gate, six logic gates in
total. The truth table for the full adder includes an additional column to take nto
account the Carry-in input as well as the summed output and carry-output.

=

1
3 4 6 ARB®C
B w?l,/ ; 5'_“\!! J
1

SUM
| Tl 46
C 2 4044 AB+BC+AC
T4 -

5 2 3 CARRY

Figure: Logic diagram of a Full adder using two Half Adders

Table: Truth Table for Full Adder
Table: Truth Table for Full Adder

INPUTS aouUTPUTS

a B [= CAarRRY SuUM

(i L4 L] u] L

& [§] 1] 1

o 1 Q Q 1

a 1 1 i X

1 4] a o 1

1] 1 1 (n}
- T 1 i] T o

1 1 1 1 1

FLIP FLOP

1 RS Flip Flop

RS Fhip Flop have two mputs, S and R 8 is called set and R 15 called reser. The
S input is used to produce HIGH on Q (Le. store binary 1 in flip-flop). The R
input 15 used to produce LOW on O (L.e store binary 0 in flip-flop). Q' 15 Q
complementary output, so it always holds the opposite value of Q. The output of
the 8-R Flip Flop depends on current as well as previous mputs or state, and its
state (value stored) can change as soon as its inputs change. The circuit and the
truth table of RS Flip Flop is shown below.

Figure : RS Flip Flop

The operation has to be analyzed with the 4 inputs combinations together with
the 2 possible previous states.

When 8= 0and R = 0: If we assume Q= | and (' = 0 as initial condition,
then output @ after input 15 applied wouldbe Q= (R+ Q'Y= 1and) = (8
+ Q) =0. Assuming Q) = 0 and Q' = 1 as initial condition, then output Q)
after the input applied wouldbe Q=(R+ Q'Y =0and Q'= (S + Q)= 1. S0
it 15 clear that when both S and B mputs are LOW, the output 1s retained as
before the application of inputs, (1.e. there 12 no state change).

When S= 1 and R = 0: If we assume Q = | and Q' = 0 as mitial condition,
then output () after input is applied wouldbe Q =(R+ Q)= 1 and Q' = (8
+ Q) =0. Assuming Q = 0 and ' = | as initial condition, then output Q
after the input applied wouldbe Q=(R+Q)V=1and Q'=(S+ Q) =0. S0
in simple words when S is HIGH and R is LOW. output Q) is HIGH.

When S=0and R = 1: If we assume Q = | and Q' = 0 as mitial condition,
then output Q after input is applied would be Q=(R+ Q'Y =0and ' = (S
+0Q) =1, Assuming Q=0 and ' = | as mitial condition, then output Q
after the input applied wouldbe Q=(R+ Q) =0and Q'=(S+ Q) =1L. So
in simple words when S 1s LOW and R 1s HIGH, output () is LOW,

When S =1 and R =I : No matter what state () and (' are in, application
of 1 at input of NOR gate always results in 0 at output of NOR gate, which
results in both Q and Q' set to LOW (i.e, Q =Q'). LOW in both the outputs
hasically is wrong, so this case is invalid.

It is possible to construct the RS Flip Flop using NAND gates (of course as
seen in Logic gates section). The only difference 1s that NAND 1s NOR gate dual
form (Did 1 say that in Logic gates section?). So m this case the R=0and S=10
case becomes the invalid case. The circuit and Truth table of RS Flip Flop using
NAND is shown below.

R

Figure : S-R using NAND Guates
Table Truth table for SR Flip Flop

5 R 0 O+
I I 0 0
| 1 1]
i 1 X 0
l 0 X |
0 0 i X 1

If you look closely, there is no control signal. so this kind of Flip Flopes
or flip-flops are called asynchronous logic elements. Since all the sequential
circuits are built around the RS Flip Flop, we will concentrate on synchronous
circuits and not on asynchronous circuits,

2 RS Flip Flop with Clock

We have seen this circuit earlier with two possible input configurations: one with
level sensitive input and one with edge sensitive input. The circuit below shows
the level sensitive RS Flip Flop. Control signal "Enable” E 15 used to gate the
input 5 and R to the RS Flip Flop. When Enable E s HIGH. both the AND gates
act as butfers and thus R and S appears at the RS Flip Flop input and it functions
like a normal RS Flip Flop. When Enable E is LOW, it drives LOW to both inputs
of RS Flip Flop. As we saw in previous page, when both imnputs of a NOR Fhip
Flop are low, values are retained (i.e. the output does not change).

[[

Figure : 5-R with Edge Sensitive and Level sensitive

Set up and Hold time

For synchronous flip-flops, we have special requirements for the inputs
with respect to clock signal input. They are

Setup Time: Minimum time period during which data must be stable
before the clock makes a valid transition. For example. for a posedge
triggered flip-flop. with a setup ime of 2 ns. Input Data (1.e. R and 8 in the
case of RS flip-flop) should be stable for at least 2 ns before clock makes
transition from 0 to 1.

Hold Time: Minimum time period duning which data must be stable after
the clock has made a valid transition. For example, for a posed triggered
flip-flop. with a hold time of | ns. Input Data (i.e. R and S in the case of
RS flip-flop) should be stable for at least | ns after clock has made
transition from O to |.

If data makes transition within this setup window and before the hold window,
then the flip-flop output is not predictable, and flip-flop enters what is known as
meta stable state. In this state flip-flop output oscillates between 0 and |. It takes
some time for the flip-flop 1o settle down. The whole process is called Meta
stability. You could refer to tidbits section to know more information on this
topic. The waveform below shows input S (R is not shown), and CLK and output
Q) (Q' 1s not shown) for a SR posed flip-flop.

N

mm hald time
: l
Q L
L]
il r
1

Figure: Waveform for 5-R and CLEK

Figure: Waveform for S-R and CLK
3 D Flip Flop

The RS Flip Flop seen earlier contams ambiguous state: to eliminate this
condition we can ensure that S and B are never equal. This is done by connecting
S and R together with an inverter. Thus we have D Flip Flop: the same as the RS
Flip Flop. with the only difference that there is only one input, instead of two (R
and S). This input 1s called D or Data input. D Flip Flop is called D transparent
Flip Flop for the reasons explained earlier. Delay flip-flop or delay latch is
another name used. Below is the truth table and circuit of D Flip Flop.

In real world designs (ASIC/FPGA Designs) only D latches/Flip-Flops are
used.

Figure 2.12: I Flip Flop with Edre Sensitive and Level sensitive
Table: Truth table for D Flip Flop

Below is the D Flip Flop waveform, which is similar to the RS Flip Flop one. but
with R removed.

2| =

Figure: D Flip Flop waveform
Figure: D Flip Flop waveform

5 JK Flip Flop

The ambiguous state output in the RS Flip Flop was eliminated in the D Flip Flop
by joining the inputs with an inverter. But the D Flip Flop has a single input. JK
Flip Flop is similar to RS Flip Flop in that it has 2 inputs J and K as shown Figurer
below. The ambiguous state has been eliminated here: when both inputs are high,
output toggles. The only difference we see here is output feedback to inputs,
which is not there in the RS Flip Flop.

kY s

E

J e
5

Figure: JK Flip Flop
Tahle: Truth table for JK Flip Flo

4 T Flip Flop

When the two mputs of JK Flip Flop are shorted, a T Flip Flop 15 formed. It 15
called T Flip Flop as, when mput is held HIGH, output toggles.

: o
E__
K-
a
Figure ; T Flip Flop
Table: T Flip Flop
T Q O+
I 0 |
| 1 0
0 1 1
0 ' 0 0

6 JK Master Slave Flip-Flop

All sequential circuits that we have seen in the last few pages have a
problem (All level sensitive sequential circuits have this problem). Before the
enable input changes state from HIGH to LOW (assuming HIGH 15 ON and LOW
1s OFF state), if inputs changes, then another state transition occurs for the same
enable pulse. This sort of multiple transition problem is called racing.

If we make the sequential element sensitive to edges. instead of levels. we
can overcome this problem, as input is evaluated only during enable/clock edges.

4 J [+ a4 11—3
E —E
h K [0 K o |
CLK

Figure: JK Master Slave Flip Flop
Figure: JK Master Slave Flip Flop
In the Figure above there are two Flip Flop, the first Flip Flop on the left 1s called

master Flip Flop and the one on the nght is called slave Flip Flop. Master Flip
Flop is positively clocked and slave Flip Flop 1s negatively clocked.

Figure : JK Master Slave Flip Flop
Figure : JK Master Slave Flip Flop

COUNTERS

= Counters are a specific type of sequential circuit,

Like registers, the state, or the flip-flop values themselves, serves as the
“output.”

* The output value mcreases by one on each clock evele.

» After the largest value. the output *wraps around” back to 0.

Benefits of counters

= Counters can act as simple ¢locks to keep track of “time.”

* You may need to record how many times something has happened.
- How many bits have been sent or received?
- How many steps have been performed in some computation?
= All processors contain a program counter, or PC.

- Programs consist of a list of instructions that are to be executed one
after another (for the most part).

- The PC keeps track of the instruction currently being executed.
- The PC increments once on each clock cycle, and the next program
mstruction is then executed.

Counter Types
Asvnchronous Counter (Ripple or Senal Counter)

Each FF is triggered one at a time with output of one FF serving as clock
input of next FF in the chain.

Synchronous Counter (a.k.a. Parallel Counter)

All the FF" s in the counter are clocked at the same time.
Up Counter

Counter counts from zero to 8 maximum count.
Down Counter

Counter counts from a maximum count down to zero.
BCD Counter

Counter counts from 0000 to 1001 before it recveles.

Pre-settable Counter

Counter that can be preset to any starting count either synchronously or
asynchronously

Ring Counter

Shift register in which the output of the last FF 1s connected back to the
input of the first FF.

Johnson Counter

Shift register in which the inverted output of the last FF 15 connected to the imput
of the first FF.

1 Synchronous Counter

There 1s a problem with the nipple counter just discussed. The output stages
of the flip-flops further down the line (from the first clocked flip-flop) take time
to respond to changes that occur due to the initial clock signal. This 1s a result of
the internal propagation delay that occurs within a given flip-flop.

A standard TTL flip-flop may have an internal propagation delay of 30 ns.

If you join four flip-flops to create a MOD-16 counter, the accumulative
propagation delay at the highest-order output will be 120 ns. When used in high-
precision synchronous systems, such large delays can lead to tming problems.

To avod large delays. you can create what is called a synchronous counter.
Synchronous counters, unlike nipple (asynchronous) counters, contain flip-flops
whose clock inputs are driven at the same time by a common clock line. This
means that output transitions for each flip-flop will occur at the same time. Now,
unlike the ripple counter, you must use some additional logic circuitry placed
between various flip-flop inputs and outputs to give the desired count waveform.

For example, to create a 4-bit MOD-16 synchronous counter reguires
adding two additional AND gates, as shown below. The AND gates act to keep
flip-flop m hold mode (if both mput of the gate are low) or toggle mode (if
both inputs of the gate are high). So, during the 01 count, the first flip-flop 15
in toggle mode (and always is); all the rest are held in hold mode. When it 15
time for the 2-4 count, the first and second flip-flops are placed in toggle mode;
the last two are held in hold mode.

When it is time for the 4-8 count, the first AND gate is enabled, allowing
the third flip-flop to toggle. When it is time for the 815 count, the second AND
gate 1s enabled. allowing the last flip-flop to toggle

MOD-16 synchronous counler

-5V
L £ @
g @
CLK L
JInnAnRAL
cL¥ e i
JULIMN A=Y _ L~ L =
9: ga ﬂ‘: {]!
{L5H) [615
CIx |
cos LML ML L L L L L
e L4 4 ¥ F1 1 10T L1 1|
&
€
@
oo | ol w:almt ot | et | e | oain | oooe | 1o0d | ame | sotn | oo | daen | 1ate | tann | oo | door
o lylalayleglsglglylglolpnlazinlawisgle!

Figure: Mod 16 Synchronous Counters and Cycle Diagram

The nipple (asynchronous) and synchronous counters discussed so far are
simple but hardly ever used. In practice, if you need a counter, be il nipple or
synchronous, you go out and purchase a counter IC. These 1Cs are often MOD-
16 or MOD-10 counters and usually come with many additional features, For
example, many ICs allow you to preset the count to a desired number via parallel

input lines.

Synchronous Up /Down Counter

The down counter counts in reverse from 1111 to 0000 and then goes to
| 11 1. If we ispect the count cycle, we find that each flip-flop will complement
when the previous flip- flops are all 0 (this is the opposite of the up counter).
The down counter can be implemented simular to the up counter. except that the
AND gate iput 15 taken from Q' instead of). This 15 shown i the following
Figure of a 4-bit up-down counter using T flip-flops.

l. a = J .-]

- S CLK

- S
oy = Up
]
oy
-

Down

Figure: Synchronous Up /Mown Counter
Figure: Synchronous Up /Down Counter

2 Asynchronous Up /Down Counter:

In certain applications, a counter must be able to count both up and down.
The circuit below s a 3-bit up-down counter. It counts up or down depending on
the status of the control signals UP and DOWN. When the UP input is at 1 and
the DOWN mput 15 at 0, the NAND network between FFO and FF1 will gate the
non-inverted output (Q) of FFO mto the clock input of FF1. Similarly, Q of FFI
will be gated through the other NAND network into the clock input of FF2, Thus
the counter will count up.

]

Figure: Asynchronous Up /Down Counter

When the control input UP is at 0 and DOWN is at 1, the inverted outputs
of FF. and FF. are gated into the clock inputs of FF. and FF: respectively. If the
flip-flops are imitially v reset to (s, then the counter will go through the following
sequence as input pulses are apphed

Notice that an asynchronous up-down counter is slower than an up counter
or a down counter because of the additional propagation delay introduced by
the NAND networks.

Design of Synchronous Counters

This section begins our study of designirm an important class of clocked
sequential logic circuits-synchronous fi ni t e -state machines. Like all sequemml
circuits, a finite-state machine determines its outputs and 1ts next state from its
current inputs and current state. A synchronous finite state machine changes state
only on the clocking event.

ANALOG TO DIGITAL CONVERSION

A comparator compares the unknown voltage with a known value of voltage and
then produces proportional output (1.e. it will produce either a | or a 0). This
principle is basically used in the above circuit. Here three comparators are used.
Each has two inputs. One mput of each comparator 1s connected to analog mnput
voltage. The other input terminals are connected to fixed reference voltage hike
+3/4V, +¥/2 and +V/4. Now the circuit can convert analog voltage mto
equivalent digital signal. Since the analog output voltage 15 connected in parallel
to all the comparators, the circuit 15 also called as parallel A/D converter.

3 C, »
o— 3
+avia” comparalor =3
=
o L 4

anolog 2 C, E

input O—
P sz 7 comparator ;
¥ E
1 c, ©

[—
+\/i4 ¥ comparator

Figure: ADC Conversian

Working — Here each comparator is connected to a reference voltage of +3/4V,
+V/2 and +V/4 with their outputs as C.C.C respectively, Now suppose the analog
mput voltage change from (0 — 4V, then the actual values of reference voltages
will be +3/4V = 3V, +V/2 =2V and +V/4 =1V, Now there will be following
conditions of outputs of the circunt

1) When input voltage is between () and 1V, the output will be C.C.C. = 000,

2} When input voltage = 1V £ 2V, the output will be C.C-C, = 001.
3) When input voltage > 2V £ 3V, the output will be C.C.C, =011.
4) When input voltage > 3V £ 4V, the output will be C.C.C, = 111.

In this way, the circuit can convert the analog input voltage into its
equivalent or proportional binary number in digital style.

1 Successive Approximation Technique

The basic drawback of counter method (given above) is that it has longer
conversion time. Because it always starts from 0000 at every measurement, until
the analog voltage 15 matched. This drawback 15 removed In successive
approximation method. In the adjacent figure, the method of successive
approximation technique 15 shown. When unknown voltage (V.) is apphed, the
circuit starts up from 0000, as shown above. The output of SAR advances with
cach MSB. The output of SAR does not increase step-by-step in BCD bus
pattern. but individual bit becomes high-starting from MSB. Then by
companson, the bit 1s fixed or removed. Thus, it sets first MSB (1000}, then the
second MSB (0100) and so on. Every time. the output of SAR is converted to
equivalent analog voltage by binary ladder. It 15 then compared with apphed
unknown voltage (V.). The companison process goes on, in binary search style,
until the binary equivalent of analog voltage 15 obtained. In this way following
steps are carried out during conversion.

SAR
-
=
digital
comparator Tl I——: mﬁ?jpuu
1'";1':9 binary ladder

Figure: Successive Approximation Technigue

Figure: Successive Approximation Technique
Now refer the following figure and the given steps -

1} The unknown analog voltage (V.) 1s applied.
2) Starts up from 0000 and sets up first MSB 1000,
3)IFV, = 1000, the first MSB s fixed.
4y V. < 1000, the first MSB 1s removed and second MSB is set
5) The fixing and removing the MSBs continues up to last bit (LSB). until
equivalent binary output is obtained.

B

B i]
wor

e 101
-

/ L

o 1011
-~

\:I:n ,.arm""i- oo

I:""'l. 1001

WL oo

start el
unn""m“ =®g10

™t e i

/" oo

—w 001
\ ann
-u-., n
o0 o
0001
I'.'I.'ﬂi..._.I

Figure 3.38 Equivalent Binary Output
Figure 3.38 Equivalent Binary Output

2 Flash ADC

Also called the parallel A’D converter, this circunt is the simplest to understand.
Tt 1s formed of a series of comparators, each one comparing the mput signal to a
unigue reference voltage. The comparator outputs connect to the inputs of a
priority encoder circut, which then produces a binary output.

A L8
Ly Fimn

pericesty |
| snesder
ERnary suipus

i

Figure: Flash ADC

Figure: Flash ADC
The following illustration shows a 3-bit flash ADC cireuit:

V. 15 a stoble reference voltage provided by o precision voltage regulator
as part of the converter circuit, not shown in the schematic. As the analog input

voltage exceeds the reference voltage at each comparator, the comparator outputs
will sequentially saturate to a high state. The priority encoder generates a binary
number based on the highest-order active input, ignoring all other active inputs.

When operated, the flash ADC produces an output that looks something like this

Tirmg ==

1zure: Outputs
Qﬂlﬂhﬂ_‘—‘—»_.ﬁ_‘_‘—r‘__‘_,_,_
alpul

Time —=

DIGITAL TO ANALOG CONVERTER(DAC)

The process of converting digital signal into equivalent analog signal 1s
called D/A conversion. The electronics circuit, which does this process. 1s called
DVA converter. The circuit has ,.n° number of digital data inputs with only one

output. Basically, there are two types of D/A converter circuits; Weighted
resistors VA converter circunt and Binary ladder or R-2R ladder D/A converter
circuit,

1 Weighted resistors D/A converter

Here an OPAMP is used as summing amplifier. There are four resistors R, 2R,
4R and SR at the input terminals of the OPAMP with R as feedback resistor. The
network of resistors at the input terminal of OPAMP is called as vaniable resistor
network. The four inputs of the circuit are D, C. B & A Input D is at MSB and
A is at LSB. Here we shall connect 8V DC voltage as logic—1 level. So we shall
assume that 0 =0V and | =8V.

MsE

De—"— .E

itad IR Wi
P,,g.". C st —

6=0V] Bamrh
1=8v R a
Ao e *
LEB analog

output voltage

2 2
Figure. Weighted resistors DA converter
Figure: Weighted resistors D/A converter
MNow the working of the circuit 1s as follows. Since the circuit is summing
amplifier. its output is given by the following equation

R(D+E +H +}|)
iy = — — — J—
¢ R 2R 4R BR

Waorking of the circuit
When input DCBA = 00{N), then putting these value in abave equation (1) we get

R(ﬂ*‘ﬁ*ﬁ‘ﬁﬁ)'“

When digital input of the circunt DCBA = 0001, then putting these value in above
equation (1) we get

a2 8490, ov
Yo (n 2R 3R BR

When digital input of the circut DCBA = (0010, then putting these value in above
equation (1) we get

In this way, when digital input changes from 0000 to 1111 (in BCD style),
output voltage (Vo) changes proportionally. This is given in the conversion chart.
There are some main disadvantages of the circuit,

They are

1) Each resistor in the circut has different value.

2} So error in value of each resistor adds up.

3) The value of resistor at MSB 1s the lowest. Hence, 1t draws more current,

4) Also, its heat & power dissipation is very high.

5) There is the problem of impedance matching due to different values of
resistors,

2 R-2R Ladder D/A Converter

It is modern type of resistor network. It has only two values of resistors the R and
2R. These values repeat throughout in the circuit. The OPAMP is used at output
for scaling the output voltage, The working of the circuit can be understood as
follows. For simplicity, we ignore the OPAMP in the above circunt (this 15
because its gain is unity). Now consider the circuit, without OPAMP. Suppose
the digital input 1s DCBA = 1000, Then the circuit is reduced to a small circuit.

]x{+v}-§

2R
i (m +2R

Its output 15 given by —

Reduced circuit of R-2R ladder, when we consider that all inputs=0

Now suppose digital input of the same circuit 1s changed to DCBA =0100. Then
the output voltage will be V/4, when DCBA = 0010, output voltage will be V/8,
for DCBA = 0001, output voltage will be V/16 and so on. The general formula
for the above circuit of R—2R ladder, including the OPAMP also, will be -

	part-02.pdf
	BE8253_139.pdf
	BE8253_140.pdf

	part-03.pdf
	BE8253_141.pdf
	BE8253_142.pdf
	BE8253_143.pdf
	BE8253_144.pdf
	BE8253_145.pdf
	BE8253_146.pdf
	BE8253_147.pdf
	BE8253_148.pdf
	BE8253_149.pdf
	BE8253_150.pdf
	BE8253_151.pdf
	BE8253_152.pdf
	BE8253_153.pdf
	BE8253_154.pdf
	BE8253_155.pdf
	BE8253_156.pdf
	BE8253_157.pdf
	BE8253_158.pdf
	BE8253_159.pdf
	BE8253_160.pdf
	BE8253_161.pdf
	BE8253_162.pdf
	BE8253_163.pdf
	BE8253_164.pdf
	BE8253_165.pdf
	BE8253_166.pdf
	BE8253_167.pdf
	BE8253_168.pdf
	BE8253_169.pdf
	BE8253_170.pdf
	BE8253_171.pdf
	BE8253_172.pdf
	BE8253_173.pdf
	BE8253_174.pdf
	BE8253_175.pdf
	BE8253_176.pdf
	BE8253_177.pdf
	BE8253_178.pdf
	BE8253_179.pdf
	BE8253_180.pdf

