MA8402 - PROBABILITY AND QUEUEING THEORY

 (REGULATION 2017)Prepared by,
S. Kanagalakshmi, AP/Mathematics

UNIT 1 - PROBABILITY AND RANDOM VARIABLES

> The theory of probability has its origin in gambling and games of chance.
$>$ It owes much to the curiosity of gamblers who prestered their friends in the mathematical world with all sorts of questions.
> Laplace said " we see that the theory of probability is at bottom only common sense reduced to calculation, it makes us appreciate with exactitude what reasonable minds fell by a sort of instinct, often without being able to account for it...

AXIOMS OF PROBABILITY

$>0 \leq \mathrm{P}(\mathrm{E}) \leq 1$
$>\mathrm{P}(\mathrm{S})=1$
$>$ For any sequence of mutually exclusive events E1,E2,E3,...(i.e., events for which $E i E j=\phi$ when $i \neq j$),

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

We refer to $\mathrm{P}(\mathrm{E})$ as the probability of the event E

RANDOM VARIABLES

RANDOM VARIABLES

DISCRETE
CONTINUOUS

DISCRETE RANDOM VARIABLES

A random variable X is discrete if it takes only discrete or countably finite values.

CONTINUOUS RANDOM VARIABLE

A random variable X is said to be continuous if it takes all possible values between certain limits or in an interval which may be finite or infinite.

DISCRETE RANDOM VARIABLES

-BINOMIAL DISTRIBUTION

-POISSON DISTRIBUTION
-GEOMETRIC DISTRIBUTION

CONTINUOUS RANDOM VARIABLES

-UNIFORM DISTRIBUTION
-EXPONENTIAL DISTRIBUTION
-NORMAL DISTRIBUTION

THANK YOU

